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Abstract 

Taking advantage of the World Bank’s multi-topic surveys for Nigeria, collected pre and post 

the COVID-19 pandemic, we assess the ability of a risk sensitive vulnerability measure to 

anticipate households experiencing food insecurity conditions during the pandemic. The results 

are disappointing: we document that our vulnerability measure severely underperforms in 

predicting food-insecure households out-of-sample and that a simple data driven routine, 

although not able to close the gap, proves to do better even in a data-scarce environment. 

Sensitivity tests using only the pre-pandemic data show that the poor forecasting performance 

is not simply due to the discontinuity in the data-generating process (face-to-face vs. phone-

based surveys) brought about by the mobility restrictions. This evidence has two important 

implications: i) there is a need to reconsider the effectiveness of the early warning models used 

by policymakers to identify vulnerability hotspots; ii) more methodological effort is required to  

address the limitations of current methods in predicting out-of-sample outcomes. 
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1. Introduction 

Considerable attention has been given to the detrimental effects of the pandemic crisis on the well-

being and food security of impoverished individuals in developing countries (Amare et al., 2021; 

Béné, 2020; Béné et al., 2021; Bundervoet et al., 2022; Egger et al., 2021; Huss et al., 2021; Upton 

et al., 2021). However, less empirical focus has been placed on investigating whether it was possible 

to anticipate – so to target in advance – the socioeconomic groups most at risk, identified as 

vulnerable. In this work, we conduct a retrospective empirical analysis to shed light on this issue. In 

addressing this matter, we heed the recent call by Upton et al. (2022) to care about whether 

measurements at our disposal exhibit skills in predicting development outcomes out-of-sample and 

provide empirical validation of predictive models by testing their forecasting accuracy on publicly 

available data.  

Drawing on household-level microdata taken from multi-purpose household surveys collected pre- 

and post-COVID-19 by the World Bank in Nigeria, we make two main amendments to the micro 

vulnerability literature. Firstly, we adapt the “risk-sensitive” longitudinal measure of vulnerability 

originally proposed by Calvo & Dercon (2005, 2013) by developing a household-level indicator of 

‘Vulnerability as the Threat of future Food Insecurity’ (VTFI). Secondly, we apply a "train-test-

compare" approach, commonly employed in the machine learning community, to our vulnerability 

analysis. This entails conducting a post-shock empirical validation to assess the out-of-sample 

forecasting performance of our model in predicting households that experienced food insecurity 

during the COVID-19 period— which is here considered as an exceptional large-scale "natural 

experiment." Additionally, we replicate this process using a simple machine learning model that 

employs an interpretable tree-based approach to predict food insecurity status beyond the observed 

data (Hastie et al., 2009).   

We are particularly focused on precisely forecasting households experiencing food insecurity; 

however, the results of our analysis are disappointing. Our risk-sensitive vulnerability measure, VTFI, 

significantly underestimates the proportion of households facing food insecurity because of the 

COVID-19 pandemic, leading to a high number of false negatives. These findings remain consistent 

even when employing the train-test-compare approach exclusively with the pre-COVID-19 dataset. 

This check aims to address concerns related to potential disparities in the data generation process 

between the periods before and after the COVID-19. Conversely, the data-driven approach tends to 

overpredict the prevalence of food-insecure households. Notably, the latter approach outperforms 

traditional predictive tools, even when operating in data-scarce environments.  
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While acknowledging that the two methodologies are not directly comparable, our findings suggest 

that existing vulnerability measures offer limited and potentially misleading insights to policymakers. 

This undermines the cost-effectiveness and efficacy of resilience-building programs. Therefore, there 

is a pressing need to re-evaluate current targeting mechanisms, develop improved profiling 

methodologies, and conduct more empirical validation of predictive models for welfare outcomes. 

This issue is particularly acute in developing contexts where data scarcity is common (Aiken et al., 

2022).  

Before delving into the details of our analysis, it is important to clarify two preliminary points. Firstly, 

our focus in this study is not on examining the direct effects of the pandemic itself. Rather, we utilize 

the COVID-19 pandemic as a "stress test" to validate the empirical methodologies employed. 

Secondly, we acknowledge that ex-ante vulnerability predictions and ex-post observed outcomes are 

different metrics, and simple comparisons between these two statistics should be taken with a grain 

of salt. This is because the concept of vulnerability is an inherently forward-looking construct, and as 

such, it is neither directly observable nor linked to the actual manifestation of shocks (Imai et al., 

2011; Magrini et al., 2018). Additionally, we recognize that the pandemic shocks differed from the 

routine shocks experienced by households in the pre-COVID-19 period (although the endogenous 

components of vulnerability should remain the same). Furthermore, we are also mindful of various 

methodological caveats and concerns in our work including data comparability, data scarcity, absence 

of ex-ante identification of the characteristics and probabilities associated with the pandemic “state 

of the world”. We duly take these caveats into careful consideration both in our empirical analysis 

and robustness checks.  

From a methodological viewpoint, our work contributes to the well-established theoretical and 

empirical literature on vulnerability to poverty and food insecurity and adverse shocks (Bogale, 2012; 

Calvo & Dercon, 2005, 2013; Chaudhuri et al., 2002; Gallardo, 2018; Hoddinott & Quisumbing, 

2003; Magrini et al., 2018; Povel, 2015; Sileshi et al., 2019). It also aligns with the flourishing strand 

of works that leverage data-driven and cross-validation methods coupled with survey information in 

the service of poverty and food insecurity targeting, mapping, and monitoring (see, among others, 

Aiken et al., 2022; Aiken et al., 2023; Browne et al., 2021; Garbero & Letta, 2022; McBride et al., 

2021; Zhou et al., 2021). Specifically, our methodological contribution is to make theory-based and 

data-driven literature meet advocating for a forecasting culture based on interpretability, domain 

knowledge, and economic intuition.  

The rest of this paper is arranged as follows: the subsequent section reviews the relevant literature, 

Section 3 describes the context and data, Section 4 illustrates the empirical strategy and the predictive 
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models, Section 5 presents the results of the empirical analysis, Section 6 shows the sensitivity 

checks, and Section 7 concludes and provides policy recommendations. 

2. Literature review 

In order to provide a comprehensive understanding of our contribution, it is essential to contextualize 

it within the relevant scientific literature. In this section, we will review two key strands of literature 

that inform our work on ex-ante profiling methodologies. The first strand is the traditional 

vulnerability literature, which is firmly grounded in standard microeconomic theory. The second 

strand pertains to the emerging research area that harnesses machine learning techniques for poverty 

and food insecurity mapping, monitoring, and targeting. Additionally, we will provide a summary of 

the literature concerning the impacts of the pandemic on the welfare of impoverished individuals in 

developing nations, particularly within the context of the food system. 

2.1. The vulnerability literature 

The recognition of significant movements in and out of poverty has shifted the focus towards 

household vulnerability as a basis for social protection strategies. However, assessing risk and 

vulnerability is challenging due to the varying definitions of vulnerability and the limited availability 

of data to measure it (Hoddinott and Quisumbing, 2003). Timely identification of vulnerable 

populations is crucial, as delays in providing assistance to the appropriate regions can result in 

inadequate support (Headey and Barrett, 2015). Upton et al. (2022) highlight that conventional 

measures of poverty and food security often work well in targeting chronically poor or food-insecure 

individuals but perform poorly in identifying temporary deprivation. Therefore, they are less effective 

in responding to major shocks when most needed. In contrast, vulnerability assessments serve as an 

ex-ante targeting criterion, allowing for the identification of individuals in greatest need before the 

occurrence of shocks. At the micro level, vulnerability to poverty is the most widely used notion of 

vulnerability. It refers to the likelihood that an individual or household will experience a level of 

welfare, typically proxied by consumption, below a fixed benchmark, such as the poverty line, in the 

near future (Hoddinott & Quisumbing, 2003). Although this notion of vulnerability is strictly linked 

to poverty, the two concepts are different. Vulnerability is a dynamic concept that looks toward the 

future and is unobservable at any point in time (Chaudhuri et al., 2002). It is said to be ex-ante and 

forward-looking because it is measured at time t, before the shock occurs (ex-ante), and refers to the 

probability of being poor at time t+1 (forward-looking). Conversely, poverty is an effective outcome 

that is observable at time t. It refers to the ex-post static status in which the individual lives at the 

exact moment it is observed and measured (Gallardo, 2018). Correlates of vulnerability may differ 
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from those of poverty. This distinction plays a crucial role in designing policies and targeting only 

the poor could exclude a significant group of individuals who risk experiencing a welfare loss in case 

of downside shocks (Montalbano, 2011).  

One of the most robust “risk-sensitive” vulnerability measures, in the presence of panel data, is the 

one introduced by Calvo & Dercon (2005, 2013). They define vulnerability as a probability-weighted 

average of future indices of deprivation in different “states of the world”. This measurement combines 

households’ deprivation and shortfalls in welfare indicators with exposure to risks and satisfies the 

so-called “focus axiom”, according to which the burden of future deprivation will not be compensated 

by any possible positive outcomes. Building upon the pioneering work of Christiaensen & Boisvert 

(2000), vulnerability measurements have recently been adapted to the field of food insecurity (Bogale, 

2012; Das, 2021; Ibok et al., 2019; Mutabazi et al., 2015; Sileshi et al., 2019). However, a lack of 

shared understanding regarding fundamental terms, data requirements, and the interpretation of 

vulnerability to food insecurity has hindered progress in theory and methods. It is crucial to adopt a 

forward-looking approach that not only identifies currently food-insecure households but also those 

susceptible to shocks and risks such as natural disasters and extreme climate conditions. This 

approach enhances the effectiveness of safeguarding households from the detrimental impacts of such 

shocks. Therefore, similar to poverty, it is important to differentiate between food insecurity and 

vulnerability to food insecurity. Food insecurity indicators provide static measurements of food 

shortage for a household at a specific moment. On the other hand, vulnerability to food insecurity 

involves dynamic calculations that incorporate risks and shocks households might face, potentially 

affecting food consumption levels (Sileshi et al., 2019). In this context, vulnerability refers to the 

household's probability of falling below the food poverty line (Capaldo et al., 2010; Løvendal & 

Knowles, 2005; Sileshi et al., 2019). 

In this study focusing on Nigeria, we propose an empirical application of the risk-sensitive measure 

introduced by Calvo & Dercon (2005), named vulnerability as the threat of food insecurity (VTFI), 

utilizing a hybrid threshold as proposed by Povel (2015). 

2.2. Machine learning applications to poverty and food insecurity 

In the last few years, in the wake of the increasing use of data science and artificial intelligence 

techniques in economics, as well as due to the recent availability of large amounts of information in 

the form of big and non-conventional data sources requiring computationally-intensive tools, a new 

body of research has focused on the leveraging of the machine- and deep-learning predictive 

algorithms for the mapping, targeting and monitoring of a variety of wellbeing outcomes. 
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Among the first to apply these tools in development economics, Blumenstock et al. (2015) use 

anonymized mobile phone data from Rwanda to show the potential of feature engineering and elastic 

net regularization techniques in predicting poverty and wealth status and generating high-resolution 

maps of poverty and wealth from call records. Jean et al. (2016) instead couple high-resolution 

daytime satellite imagery from five African countries with convolutional neural networks to predict 

local-level poverty. McBride & Nichols (2018) employ USAID poverty assessment tools and data to 

re-calibrate Proxy Means Test poverty-targeting tools towards the prioritization of out-of-sample 

performance, in place of the traditional in-sample focus, through cross-validation and stochastic 

ensemble methods. A recent work from Aiken et al. (2023) shows the importance of combining 

different data sources. They find that machine learning methods using mobile phone data can 

accurately identify ultra-poor households nearly as well as survey-based measures. By integrating 

mobile phone data with survey measurements, classifications achieve greater accuracy compared to 

those derived solely from a singular data source. 

Machine learning routines have been also applied to predict food security and resilience outcomes. 

Hossain et al. (2019) employ machine learning models, such as random forest and extreme gradient 

boosting, as well as traditional methods on survey data from Bangladesh to predict household food 

insecurity measured through the caloric intake. Lentz et al. (2019) combine high-resolution market 

data, remote sensing information, and survey data to forecast household-level food security status in 

Malawi using Least Absolute Shrinkage and Selection Operator (LASSO) and logit models. Zhou et 

al. (2021), emphasizing the need for interpretability and transparency of predictive models for policy 

targeting, leverage gradient boosting, and random forest to predict household food insecurity in 

villages from three African countries. As for resilience, Knippenberg et al. (2019) apply LASSO and 

random forests to identify the best predictors of a resilience measure based on the Coping Strategy 

Index of Malawian households, while Garbero & Letta (2022) use a cross-country survey dataset and 

a battery of machine learning algorithms to predict household resilience to shocks. More recently, 

Haushofer et al. (2022) employ machine learning – specifically, generalized random forests – on data 

from an NGO Cash Transfer program implemented in Kenya to show that households that are social 

welfare maximizing to target, namely those delivering the largest treatment effects, are not those 

predicted to be most deprived. 

In a recent overview, McBride et al. (2021) advocate the use of machine learning for poverty and 

food insecurity targeting, mapping, and monitoring, to fine-tune policy efforts on the ground and 

improve the design of effective early-warning mechanisms. At the same time, the authors warn about 

several important caveats regarding a wise policy-oriented use of these powerful tools. For instance, 
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while the sudden availability of big data may seem to free researchers and agencies from the chronic 

microdata gaps in developing contexts, most of the approaches cited above still depend on traditional 

survey data for ground-truthing and validation of the models developed using remote sensing or other 

non-conventional information. McBride et al. (2021) also note that it is only possible to predict with 

accuracy states and processes that have been previously observed in data, and this presents a challenge 

for the development of early-warning systems and suggests that research should also focus on running 

simulations of extreme scenarios in the development of targeting models and prevention tools. 

Another crucial point is the distinction between contemporaneous and sequential prediction. While 

contemporaneous prediction is useful for poverty and malnutrition mapping, sequential prediction, 

which we call forecasting, is the analytical tool necessary for early-warning and targeting purposes 

(Browne et al., 2021; Tang et al., 2021). Finally, and differently from other domains, the importance 

of some degree of interpretability of model outputs should not be understated when it comes to the 

application of machine learning routines in the service of policy targeting. In this respect, the well-

known trade-off between accuracy and transparency could lean more in favour of the latter at the 

expense of a loss in predictive accuracy (Browne et al., 2021; McBride et al., 2021). 

2.3. The food security impacts of the COVID-19 crisis 

Upton et al. (2021) highlight that the COVID-19 pandemic is only a seemingly unique event. Indeed, 

it has merely exposed the systemic and pre-existing vulnerabilities of rural populations situated within 

complex food systems in developing countries. As such, the pandemic-induced food security 

dynamics reflect the broader issues facing vulnerable rural populations confronting structural 

deprivation in the midst of myriad shocks and stressors (Béné et al., 2016). In sum, the pandemic 

acted as a threat amplifier and multiplier of shocks that are neither new nor rare to poor households 

in developing countries. Similarly, in a systematic review of the resilience capacity of local food 

systems, Béné (2020) emphasizes that the major direct impacts of the COVID-19 on the food system 

have been brought about by its effects on the income and purchasing power levels for all food system 

actors caused by non-pharmaceutical interventions (for example, mobility restrictions and 

lockdowns), and the subsequent negative effect these had on their access to food. Income losses and 

food insecurity are thus strictly interconnected, and their joint dynamics are key in explaining the 

pandemic’s direct and indirect effects on the food system. Upton et al. (2021) also highlight how rural 

households are exposed to food system shocks, particularly the shock produced by the COVID-19, 

not just as food producers but equally in their roles as food consumers or as workers within the broader 

agri-food value chain. 

In a study on nine countries from Africa, Asia, and Latin America with phone-survey data on more 
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than 30,000 respondents, Egger et al. (2021) document a generalized decline in income, employment, 

and food security (captured using self-reported missing or reduced meals) that began with the outset 

of the pandemic (March 2020). Using representative and high-frequency phone-survey data on 41,000 

households from 31 countries (collected by the World Bank), Bundervoet et al. (2022) find that more 

than one-third of respondents lost their jobs and around two-thirds suffered income losses. Similar 

insights for geographic areas can be drawn from the results of Vu et al. (2022) for Vietnam: using a 

Bartik-type IV shift-share instrument approach; the authors find small changes in food insecurity risk 

at the national level during the pandemic, but substantial heterogeneity at a more granular district 

level, with a subsample of more vulnerable districts severely affected. 

Overall, international agencies confirm that food security indicators have continued to deteriorate 

globally despite social protection interventions and extensive measures by national and international 

actors (FAO et al., 2021). The role of vulnerability in this context is central: vulnerable households 

determine the fragility of the entire food system as producers, processors, retailers, vendors, and 

consumers (FAO, 2021). Enhancing the resilience of supply chains and local agri-food systems, it is 

crucial to identify vulnerability hotspots across the food system and to understand how they respond 

to different shocks (Reddy et al., 2016). In conclusion, the literature suggests that a better 

understanding of vulnerability to food insecurity should be considered as policy priorities to increase 

resilience to future shocks (Béné et al., 2021; Bundervoet et al., 2022). 

3. Context and data  

Nigeria is the most populous African country; it was one of the first African countries affected by the 

pandemic and among the first to introduce non-pharmaceutical restrictions to control the spread of 

the virus. The pandemic and the collapse of international oil prices that followed posed a severe threat 

to Nigeria’s already fragile economy (World Bank, 2020). Prior to the pandemic, Nigeria had been 

slowly recovering from the recession in 2016. However, the country still faced high poverty rates and 

significant exposure to local and global food price volatility, which further magnified the challenges 

posed by the COVID-19 pandemic (Benson et al., 2020). In addition to these economic pressures, 

weather shocks affecting agricultural production compounded the adverse effects on household 

consumption, particularly for vulnerable rural households with limited assets (Amare et al., 2018). A 

study by Bundervoet et al. (2022) reveal that 85% of Nigerian respondents stated that income from 

non-farm household enterprises and activities declined or entirely disappeared in the immediate 

aftermath of the pandemic. By matching the World Bank’s LSMS-ISA pre-COVID-19 data with post-

COVID-19 data (taken from High-Frequency Phone Surveys) for Nigeria, the study by Amare et al. 

(2021) demonstrates a staggering a 50% increase in household food insecurity compared to the pre-
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pandemic period. Moreover, 79% of households reported having suffered a reduction in total income 

since the start of the pandemic. Further, by carrying out an ex-post impact evaluation through a 

difference-in-differences identification strategy, the authors find that mobility restrictions had 

significant adverse effects on food security outcomes, with disproportionate impacts on poor 

households and those living in conflict-ridden areas. 

Our research involves the use of combined datasets, comprising data collected before the pandemic 

gathered through standard face-to-face surveys – which are employed to predict vulnerable 

households in the vulnerability analysis – and phone-survey data collected after the pandemic – which 

are used to compare ex-ante predictions with post-COVID-19 observed outcomes in the targeting test. 

For the vulnerability analysis, wherein we predict households vulnerable to food insecurity and 

income loss, we rely on the Living Standard Measurement Study – Integrated Surveys on Agriculture 

(LSMS-ISA)1. These data are nationally representative surveys collected by the World Bank in 

collaboration with national governments. 

We use the panel dataset comprises four waves (2010-2011, 2012-2013, 2015-2016, and 2018-2019), 

which support the redesign and implementation of the General Household Survey (GHS). The GHS-

Panel sample consists of 5,000 households, which is a subsample of the GHS core survey of 22,000 

households. To ensure the continued integrity and representativeness of the sample, a partial refresh 

of the GHS-Panel sample was carried out during the fourth wave of the panel. 

Regarding the sample size, a distinction must be made between VTFI and data-driven approaches. 

For the former, longitudinal data is required, so we only kept households re-interviewed in all the 

following waves, for which we have a complete set of information. This selection process led to a 

sample of 1,250 households per wave, with a full sample of 5,000 observations. However, for the 

data-driven approach, we can employ a larger sample size. In this case, machine learning models can 

be estimated without longitudinal information. The only requirement is that households in the post-

COVID-19 data also appear in the last pre-COVID-19 survey, enabling us to match pre-pandemic 

input variables with post-pandemic outcomes for each household. As explained in more detail below, 

we train a machine learning model on the pre-COVID-19 data (the training set) and use it to predict 

post-COVID-19 outcomes (the testing set) and assess its forecasting performance. The total sample 

size is 3,715 household observations in the pre-COVID-19 data. 

For the targeting test, we use data from the LSMS-Supported High-Frequency Phone Surveys on 

 
1 Data are available at: https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA#6 
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COVID-19 implemented in 2020.2 The samples from this survey were selected from the sample of 

households interviewed in 2018/2019. The interviews consist of a 15-minute questionnaire covering 

topics such as employment status, household livelihoods, income losses, and coping strategies, access 

to basic needs, and knowledge of the COVID-19 and mitigation measures. We use the first round of 

the phone survey, carried out between April and May 2020, since it contains information on self-

reported income losses. For the theory-based approach, the dataset is combined with the panel of the 

pre-COVID-19 data to allow a comparison between pre- and post-COVID-19 outcomes, leading to a 

final sample for the targeting test of 316 households. The sample size is relatively small because the 

vulnerability measure we employ requires longitudinal data. For this reason, we can implement the 

vulnerability-based targeting test only for households interviewed in all four waves before the 

pandemic and in the post-COVID-19 period. For the data-driven approach, we do not have these 

limitations for the reasons explained above. We can therefore use a larger sample size of 1,311 

observations in the post-COVID-19 dataset. 

Based on the availability of the data and the different methodologies used (theory based and data-

driven), we explore different outcome variables. This clarification is important to underly that the two 

exercises are not directly comparable, but the machine learning practice is only applied to test these 

techniques using the available limited data. The theory-based approach requires the use of a 

continuous dependent variable. In this context, we begin by applying the logarithm to spatially and 

temporally adjusted total gross income, denominated in the Nigerian currency, the Naira. 

Subsequently, we establish its connection with the binary food insecurity outcome, as detailed below. 

Total gross income is given by the sum of farm and non-farm income. The farm income variable 

includes the gross value of the crop harvested and the value of livestock products and animals sold 

for that season. Non-farm income refers to self-employment job earnings from activities that differ 

from agricultural production. This variable is constructed by multiplying the monthly reported value 

of sales by the months of business activity in the previous twelve months. The total income variable 

includes the sum of the two categories of income described above, and all the income variables are 

expressed as logarithmic values. The outcome variable used for the post-COVID-19 analysis is the 

self-reported income losses since the pandemic’s beginning. Households were asked whether the 

income from their major sources of livelihood has reduced, stayed the same, or increased. 

Income losses have been identified as a significant driver of the COVID-19 pandemic’s impact on 

food systems and food security in developing countries (Béné, 2020; Egger et al., 2021; Bundervoet 

et al., 2022). This observation holds true for the Nigerian context as well (Amare et al., 2021). Given 

 
2 Data are available at: https://microdata.worldbank.org/index.php/catalog/3712 
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our primary objective of addressing food insecurity through the income loss mechanism, we create 

an outcome variable assigned a value of 1 when a household encounters both income losses and food 

insecurity, and 0 otherwise. Food insecurity is measured through households’ self-reported responses 

to the Food Insecurity Experience Scale (FIES) questions. The questionnaire contains the last three 

of the eight questions that are part of the standard FIES module,3 capturing the more severe aspects 

of food insecurity. We classify a household as food insecure if it reports having experienced at least 

one of the food insecurity conditions asked about in the FIES module. This choice follows up the 

most recent food security literature that largely use subjective food security metrics à la FIES for 

identifying food security conditions in the aftermath of the COVID-19 (Bundervoet et al., 2022; 

Egger et al., 2021). In the methodology below, this variable will be used as the benchmark to identify 

the households vulnerable to food insecurity. 

For the data-driven approach, as explained in more detail below, we train a machine learning model 

on the pre-COVID-19 data (the training set) and use it to predict post-COVID-19 outcomes (the 

testing set) and assess its forecasting performance. Unlike vulnerability models that are estimated 

using continuous variables for income or consumption, the machine learning routine we employ – a 

classification tree – only needs data on the same binary outcome variable for the training and testing 

sets to be employed. Moreover, the phone-survey post-COVID-19 data include only basic 

information and a much more limited set of essential variables compared to the pre-COVID-19 face-

to-face surveys. For these reasons, we employ an outcome variable represented by a simple composite 

indicator of food insecurity using the available household-level FIES questions, namely a dummy 

variable taking value 1 if a household experienced at least one of the three food insecurity conditions 

and 0 otherwise. This is possible because we have data for this variable in both the pre- and post-

COVID-19 surveys. 

The main explanatory variables included in both analyses are basic household demographics, 

education characteristics, assets, and shocks. As for the latter, we use five different potential shocks, 

namely the three idiosyncratic shocks reported as the most severe by the households and two weather 

shocks. These are i) the death of a working member of the household, ii) the illness of an income-

earning member of the household, iii) the rise in the price of major food items consumed, iv) drought, 

and v) flood. While it may appear that the shocks we have considered differ in their causes from the 

multiple shocks generated from the pandemic, they exhibit similar consequences and activate the 

same endogenous mechanisms of fragility for households. It is essential to approach the analysis of 

the pandemic within the broader context of ongoing risks and vulnerabilities faced by marginalized 

 
3 See Cafiero et al. (2018) and https://www.fao.org/in-action/voices-of-the-hungry/fies/en/. 
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populations. In this respect, it has been already stressed that the pandemic has exacerbated pre-

existing vulnerabilities to different risk factors that rural populations in poor countries regularly face 

(Upton et al., 2021). It has magnified the effects of existing vulnerabilities and exposed communities 

to a range of intersecting challenges, including economic downturns, disruptions in supply chains, 

reduced access to resources, and increased food insecurity. 

To this end, in our empirical analysis we adopted a combination of proxies for shocks. These include 

self-reported episodes directly experienced by households and two objective measures of weather 

shocks which are computed using historical rainfall data. In fact, the dataset also includes a set of 

georeferenced variables, which are used to construct negative and positive values of rainfall 

anomalies from which the dummies for drought and flood are constructed.4 Table A.1 in Appendix 

A reports the description of the entire set of variables used for both analyses, while Table A.2 displays 

their descriptive statistics.  

We use lagged input variables with the only exception being the shock variables. In other words, for 

each wave, the outcome variable is at time t, whereas all the input variables, except contemporaneous 

shock dummies, are at time t-1 and thus are taken from the previous wave. In this way, we can use 

the entire set of household characteristics available from the last pre-COVID-19 LSMS-ISA survey 

(2018-2019) as inputs employed, jointly with shock dummies, to predict the post-COVID-19 food 

insecurity outcome variable.  

As is common practice for poverty and resilience assessments (Chaudhuri et al., 2002; Calvo & 

Dercon, 2013; Povel, 2015; Ligon & Schechter, 2003; Barrett & Constas, 2014; Constas et al., 2014; 

Cissé & Barrett, 2018), our analyses make use of thresholds to discriminate vulnerable and non-

vulnerable households. Inspired by Povel (2015), we here use a hybrid threshold using both FIES 

indicators and the initial level of welfare of each individual. This allows us to predict as vulnerable 

those individuals who feel food insecure but also experienced an objective loss of welfare. 

 
4 Following Dell et al. (2014), we construct the measure of rainfall anomalies as a deviation of the level of rainfall in the previous 
twelve months from the historical average as follows: 
Rainfall anomalies: !!!""!!

!!"
#$ " 

where Rit indicates the last twelve months’ rainfall at the location of household i for year t. 𝑅# is the historical average rainfall at the 
location of household i, calculated based on the local government area (lga). RitSD is the standard deviation of rainfall at the location of 
household i. Second, we identify as droughts rainfall anomalies under the 25th percentile of the total distribution and as heavy 
rains/floods values of anomalies over the 75th percentile of the distribution. Third, dummy variables for droughts and floods are created; 
the first takes value 1 if the household experienced drought anomalies, and the second takes value 1 if the household experienced heavy 
rains/flood rainfall anomalies. 
. 
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4. Empirical strategy 

To provide a comprehensive retrospective evaluation of the accuracy of theory-based and data-driven 

methodologies in predicting households affected by the COVID-19 shock, we apply the following 

methodological steps: i) we first develop forecasts of vulnerable households using data from the pre-

COVID-19 face-to-face surveys; ii) we then generate confusion matrices to carry out an out-of-

sample validation of the forecasts using the post-COVID-19 data from the phone surveys. 

4.1. Vulnerability as the threat of food insecurity (VTFI) 

To assess vulnerable households, we adopt a risk sensitive measure of “vulnerability as the threat of 

food insecurity” (VTFI), inspired by Calvo & Dercon (2005; 2013) with the extension proposed by 

Povel (2015). This approach allows us to estimate household-specific vulnerability measurements 

that consider the possible “states of the world” that households could face, coupled with their 

respective probabilities. Using information about the occurrence of the shocks and estimating the 

related loss of income, we can predict the deprivation indexes associated with all the different states 

of the world considered, which are represented by the different combinations of shocks that a 

household might potentially face, listed in Section 3. This provides us with an ex-ante measurement 

of household vulnerability. Precisely, we measure vulnerability as follows: 

                                      																𝑉𝑇𝐹𝐼! = ∑
"#$

%!
(𝑝!" × 𝑥!"&,                                                         (1) 

where 𝑁! = ∑
'#(

)! )!!
()!,')!'!

 represents the number of possible states of the world. In our case, we 

consider five shocks so 𝑁! = ∑
'#(

. .!
(.,')!'!

 = 32 states of the world. 𝑝!" denotes the probability that the 

state of the world 𝑗 will occur and ranges between zero and one. It is measured as: 

              						𝑝!" = ∏
/#$

0!"
𝑝!"/ × ∏

1#$

2!,!$%
(1 − 𝑝!"1,                                                     (2) 

where ∏
/#$

0!"
𝑝!"/ yields the probability that Qi risks will occur in state of the world 𝑗 while ∏

1#$

2!,!$%
(1 − 𝑝!"1, 

represents the probability that Li other shocks will not occur in the same situation. 𝑥!"&  indicates the 

deprivation index and is measured as 𝑥!" = ∑
/#$

0!" 3!"%
4!

 where 𝑠!"/ represents the severity of shock q in 

state of the world 𝑗, namely the loss of income (log) in that state of the world, and 𝑦! is the threshold 
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and represents the household income (log). To target households vulnerable to food insecurity, 

inspired by the hybrid method proposed by Povel (2015), we combine the income loss with a food 

insecurity line constructed using FIES data.5 To estimate income losses associated to the experience 

shocks, assuming that shocks are independent and identically distributed (IID), we calculate the 

elasticities of income to each shock separately, as follows: 

																																							𝑦!5 = 	𝛼! + 	𝛽$	𝑠ℎ𝑜𝑐𝑘!5 + 	𝛽6𝑋′!5,$ + 𝜀!5                                        (3)                 

𝑦!5 refers to the household 𝑖 log of total income at time t; 𝛼! captures household fixed effects that 

absorb many potential time-invariant confounders, and 𝑠ℎ𝑜𝑐𝑘!5 indicates the shocks that enter the 

regression separately. 𝑋′!5,$ is a set of household characteristics, including age, sex and education of 

the head of household, household size and a set of welfare indicators (Tropical Livestock Units and 

an index for the non-agricultural assets held by the household) at time t-1 that enable an ex-ante 

computation of the outcome variable since explanatory variables at time t-1 cannot be affected by the 

shock at time t. The coefficient 𝛽" captures the percentage change in the log income given by each 

shock. To obtain a household-specific value for the loss experienced, we multiply the estimated 

coefficients for each shock by each household income values: 

                                                          𝑙𝑜𝑠𝑠!5 = 	𝛽"! 	 ∗ 𝑦!5                                                           (4)       

To control for household-specific characteristics, we re-estimate the predicted loss (ploss) using the 

following regression: 

                            																𝑝𝑙𝑜𝑠𝑠!5 = 	𝛼! + 	𝛽" 	𝑋′!5,$ + 𝜀!5                                              (5)      

𝛼! captures household fixed effects. 𝑋′!5,$ includes the same variables as Equation (3). To satisfy the 

focus axiom, we divide each predicted household-specific ploss 𝑠!"/ by household total income 𝑦! 

and replace negative losses (gains) with zeros. Finally, we sum all the different losses to get an overall 

index of deprivation 𝑥!" that household 𝑖 faces in the different states of the world j as follows: 

                                                      𝑥!" = ∑
/#$

0!" 3!"%
4!

                                                             (6)                             

As we assume that households are risk-averse, we set the parameter 𝛼=2 so that we square the value 

𝑥!" .6 Once we have state- and household-specific deprivation indexes, as in Calvo & Dercon (2005, 

 
5 A viable alternative to FIES could be the use of income or consumption data. Unfortunately, in the post-COVID-19 phone survey 
data from Nigeria these data were not collected. 
6 The parameter 𝛂 regulates the strength of “risk sensitivity” of our vulnerability measure, where 1 means risk neutrality (Povel, 2015). 
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2013) and Povel (2015), we calculate the household-associated independent probabilities of 

experiencing shocks in the state of the world 𝑗 by using a logit model as follows:  

                                                𝑃𝑟(𝑠ℎ𝑜𝑐𝑘!5)	 = 𝐹(𝑋′!5,$)                                                    (7) 

𝑠ℎ𝑜𝑐𝑘!5 at time t is predicted using explanatory variables from time t-1 and 𝑋′!5,$ includes age, sex 

and education of the head of the household and household size, and a set of welfare variables as in 

Equation (3). The household- and state-specific probabilities are then computed as in Equation (2) 

and multiplied by the household- and state-specific index of deprivation previously calculated in 

Equation (6). 

The VTFI is then calculated using Equation (1). Households that are vulnerable to income loss are 

identified as those above the median value of the vulnerability distribution which is the standard cut-

off universally employed for classification tasks (Hastie et al., 2009)7. Furthermore, since the 

COVID-19 pandemic represents a rare event in the form of a major exogenous shock, we also 

separately consider the worst-case scenario, which refers only to the state of the world in which all 

the shocks occur simultaneously, and we assign this a probability of occurrence equal to one, for 

reasons that will be explained in detail in the next section. Because we are interested in food insecurity 

through the channel of income losses, following Povel (2015), we use a hybrid threshold to 

discriminate vulnerable from non-vulnerable households that includes a food insecurity cut-off 

represented by the FIES8 in the analysis of income loss. Hence, the final sample of vulnerable 

households comprises those that are vulnerable to income losses and that also reported having 

experienced food insecurity conditions before the COVID-19 pandemic. In the targeting test, we will 

then compare these food-insecure households predicted as vulnerable by our VTFI measure with 

households experiencing income losses and food insecurity during the pandemic (post-COVID-19 

dataset), in line with the cross-country evidence provided by Bundervoet et al. (2022) and Egger et 

al. (2021) in relation to the close link between pandemic-induced income losses and heightened food 

insecurity at the household level. As clarified above, we cannot assume that all the pre-COVID-19 

vulnerable households should be necessarily affected by income losses and food insecurity in the 

post-COVID-19 as households may lose out because of unlucky realisations, or vice versa can be 

better off for upcoming reasons that were not under control ex-ante. Although this hampers a strict 

correspondence between the two statistics, it is undeniable that a certain degree of positive correlation 

should be in place across the two measures and that certain thresholds in terms of both sensitivity and 

 
7 Additional outcomes, obtained by employing the 25th and 75th percentiles as cut-off points, are reported in Section 6. 
8 More details can be found in Section 3.  
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accuracy should be met. This assessment is key for making choices in terms of appropriate targeting.  

4.2. Classification tree 

As already mentioned above, we also explore the performance of a data driven approach to test 

whether this could represent a potential path to follow for future investigations in targeting analyses. 

To this end, we employ a simple and straightforward machine learning predictive routine named 

classification trees (Hastie et al., 2009). Unlike the previous vulnerability model, which is strongly 

rooted in standard economic theory, classification trees are purely data-driven predictive techniques 

aimed at maximizing the out-of-sample predictive performance of a given outcome of interest. 

At the core of the machine learning mindset lies the “firewall” principle: none of the data involved in 

generating the predictive model should be used to evaluate its predictive performance (Mullainathan 

& Spiess, 2017). In this spirit, we use pre-COVID-19 data to tune our classification tree and select 

the best model and then use it to predict the food insecurity outcome for the unseen observations in 

the post-COVID-19 dataset. 

Classification trees are particularly suited for applications in which the decision rule needs to be 

transparent and must be communicated (Lantz, 2019), which is in line with recent calls for 

interpretability in the use of machine learning for policy targeting (Browne et al., 2021; McBride et 

al., 2021). Indeed, the output of a decision tree is intuitive and can also be easily understood by 

someone without strong statistical skills, such as decision-makers, which makes this technique 

appealing for policy targeting purposes. From a technical point of view, classification trees are based 

on a process called recursive binary splitting: the algorithm divides the data into progressively smaller 

subsets to identify recurring patterns that can be used for predicting a specific binary output. The 

model chooses the variables and split-probability that maximizes the so-called information gain 

which indicates the signals (information) we get from each variable. The information gain is 

calculated using the entropy which is a measure of impurity that controls where the classification tree 

decides to split the data. The aim is to find variables and split points that will produce the purest 

subsets, thus having the lowest entropy value possible.9 Trees are considered highly flexible methods 

because non-linearities and interactions are automatically captured by the sequence of splits in the 

tree. A drawback of classification trees is that they tend to be prone to overfitting on the training data: 

 
9 The model looks for feature values that split the data in partitions that contain primarily a single class. A segment of data that contains 
a single class is said to be pure. One criterion to measure purity is the entropy measure. As an indication of how mixed class values are 
in a sample, the entropy is measured from 0 to 1, where 0 indicates maximum homogeneity, and 1 indicates maximum disorder. The 
algorithm calculates homogeneity changes resulting from a split based on entropy. This calculation is called information gain. When a 
feature has a high information gain, it is more likely to create homogeneous groups after a split. When the information gain is zero, 
splitting this feature will not reduce entropy (Lantz, 2019). 



 17 

a high number of branches and leaves in a tree is likely to overfit the data, leading to a final model 

which performs very well in-sample but poorly out-of-sample. The solution to this issue is to reduce 

the size and complexity of the tree by “pruning” the tree. Pruning means setting a penalization cost 

for flexibility, which is referred to as a “complexity parameter” (cp). To select the optimal value of 

cp, which maximizes the out-of-sample accuracy of our model, we run 10-fold cross-validation on 

the full set of pre-COVID-19 data, compare the ten-resulting cross-validation errors, and apply the 

complexity parameter associated with the lowest cross-validation error. This cp is then selected for 

the model used to predict unseen observations belonging to the held-out post-COVID-19 data. 

Besides transparency, another critical reason why we select classification trees from many available 

machine learning techniques is that we have substantial missing data in our samples. Just like 

traditional econometric approaches, most machine learning routines do not handle missing data unless 

they are imputed. In our case, given the numerous cases where values for several variables are missing 

for many observations, this would imply either accepting a drastic loss in sample size (which is 

already limited) or opting for massive imputation of missing values, which would very likely result 

in data distortion. Unlike other methods, classification trees automatically handle missing data using 

surrogate splits in the case of missing observations (Lantz, 2019). 

Before performing our classification exercise, we must tackle the challenge of data imbalance of the 

primary outcome of interest, food insecurity. In fact, in the pre-COVID-19 sample, food insecurity 

(as measured using the composite FIES indicator described above) is, from a statistical point of view, 

a “rare” event, meaning that there are many more food-secure households than food-insecure ones. 

When facing data imbalance issues like this, machine learning routines simply tend to predict the 

over-represented class (Y = 0 in our case). This happens because the algorithms aim to maximize 

overall accuracy and provide the lowest total error rate, irrespective of which class the errors come 

from. Clearly, a model that predicts all households as food secure would be useless for our purpose. 

To prevent this from happening, we use a popular data rebalancing technique, the Synthetic Minority 

Oversampling Technique (SMOTE) routine by Chawla et al. (2002). Using SMOTE, we can 

rebalance the frequency of two classes of our outcome variable, food insecurity, in the pre-COVID-

19 sample. Specifically, SMOTE oversamples the under-represented cases and undersamples the 

majority class, leading to a smaller but rebalanced dataset. Clearly, we run SMOTE only on the pre-

COVID-19 dataset, leaving the post-COVID-19 data untouched.  

As we want to assess how accurate, given available pre-shock information, machine learning is in 

identifying vulnerable households before a food security crisis occurs, we need to simulate the 

occurrence of the shock in the covariate space of the post-COVID-19 dataset. We do so by adopting 



 18 

a “trick” that leads the algorithm to “believe” that a massive sequence of shocks has taken place in 

the post-COVID-19 data: we take all the shock dummies available in the last pre-COVID-19 wave 

(food price spikes, droughts, floods, illnesses, and deaths of household members) and artificially 

switch them to 1 for all the observations in the sample. Through this technique, the algorithm, which 

has previously learned from the pre-COVID-19 data that shocks tend to be associated with food 

insecurity status, “recognizes” the abrupt change in the patterns of key features and consequently also 

takes its decisions on the classification of observations based on this change. It should be noted that 

a need for the simulation of unobserved events and large-scale shocks has recently been emphasized 

in the specialized literature (McBride et al., 2021). 

Conceptually, by doing this, we are mimicking the occurrence of the COVID-19 generalized 

disruption by simulating, for the entire sample, the simultaneous occurrence of all the shocks and 

stressors that most households reported facing at various points in time across all waves. This 

simulation relies on a reasoning analogous to that behind the worst-case scenario in the VTFI model 

and draws heavily on the argument advanced by Upton et al. (2021), already reported above that the 

COVID-19 shock is less a new shock or unique event than a dramatic, recent manifestation of familiar 

shocks, stressors, and uncertainties that burden poor populations in developing contexts. 

4.3. Targeting evaluation 

As Upton et al. (2022) explain, a key performance test of any measurement, especially one estimated 

in a population-representative sample, is represented by its out-of-sample performance, namely when 

applied to observations not from the original estimation sample. Therefore, we compare the 

predictions generated by our developed models with the actual outcome data from the COVID-19 

phone surveys. This comparison is carried out using confusion matrices (Lantz, 2019; Hastie et al., 

2009), a straightforward tool widely employed to evaluate predictive performance. In the case of 

classification problems with a binary outcome variable, like the one in our study, it consists of a 

simple two-way table. For a comprehensive explanation, please refer to Table B.1 in Appendix B.  

5. Empirical results 

This section contains the outcomes of the vulnerability-based targeting analysis for both the VTFI 

and the classification tree discussed earlier. 

5.1. VTFI model  

Table 1 compares the predicted VTFI for the scenario in which we consider all the different states of 
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the world pre-COVID-19 (Equation 1) with the real status of households that experienced both 

income losses and food insecurity in the post-COVID-19 period. The results show that our model 

successfully predicts 88% of the households that did not experience an income loss coupled with food 

insecurity after the pandemic. This indicates a high “specificity” of the model, which refers to its 

ability to accurately identify negative cases10 (Y = 0). However, the model performs poorly in 

predicting vulnerable households, with a “sensitivity” value of only 16%. Sensitivity measures the 

model’s ability to correctly classify positive cases (Y = 1), in this case, households that are food 

insecure. In our pursuit of evaluating the effectiveness of models in identifying households vulnerable 

to food insecurity during significant shocks, our primary focus clearly lies on the sensitivity 

performance. The observed low sensitivity value indicates limitations in the model’s ability to 

accurately identify and forecast households that are at risk of food insecurity.  

Table 1. Vulnerability targeting performance – VTFI model 

  Real status 
 Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 91 178 269 

Vulnerability = 1 13 34 47 

Total 104 212 316 

  
Correctly 
Predicted 

88% 
Specificity 

16% 
Sensitivity 

39% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity calculated 
considering all the states of the world using the train set (before the COVID-19). This takes value 1 if the household is 
classified as vulnerable and 0 otherwise. The real status represents the observed income losses and food insecurity 
outcome in the test set (after the COVID-19). Income losses & FI is a combined binary variable which takes value 1 if 
the household reported both to have lost income and experienced food insecurity conditions during the pandemic. 

The predictive model’s inability to predict vulnerable households results in an overall accuracy rate 

of only 39%. This is primarily because the majority of households (212 out of 316) in the phone-

survey data reported experiencing both income losses and food insecurity. It appears that the 

vulnerability-based targeting approach is structurally unable to accurately predict that a significant 

proportion of households would be susceptible to income losses and food insecurity in the event of a 

major shock such as the COVID-19 crisis.  

5.2. Classification tree  

Figure 1 below shows the classification tree constructed using pre-COVID-19 information from the 

LSMS-ISA face-to-face surveys. The tree is composed of those variables that have been automatically 

selected by the algorithm as the ones more correlated with the outcome variable, the FIES food 

 
10 The negative cases refer to the non-food-insecure households and thus the food-secure ones. 
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security indicator. These variables include a dummy referring to the female gender of the household 

head, a dummy capturing flood shocks, a variable indicating the value of Tropical Livestock Units 

for small ruminants, and three asset measurements, namely the agricultural and non-agricultural 

wealth indices, and the overall wealth index (combining both productive and non-productive assets). 

 

Figure 1. Classification tree of food-insecure households  

These variables interact with each other and, depending on whether the value of each variable is 

below or above the reported thresholds, the tree classifies each observation in the pre-COVID-19 

training set as food insecure (Y=1) or not (Y=0). It is interesting to note that although the relationships 

depicted in the tree only signal correlation and not causation, the variables selected by the algorithm 

are consistent with the findings on the drivers and determinants of poverty traps highlighted by the 

well-established poverty trap literature (Barrett & Carter, 2013; Carter & Barrett, 2006; Carter et al., 

2008). This means that, despite being quite simple, the tree is able to detect critical recurring patterns 

embedded in the structure of the data. 

How accurate is this tree in forecasting households that have experienced food insecurity conditions 

during the COVID-19 pandemic? The answer can be found in the confusion matrix shown in Table 

2 below: 80% of food-insecure households during the COVID-19 crisis have been correctly predicted 
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by the algorithm, thanks to the “multiple-shock” simulation that we artificially introduced into the 

post-COVID-19 shock data. The tree is, however, much less accurate in identifying non-food-

insecure households, with a specificity of only 29%. For this reason, the overall forecasting accuracy 

of the model is good, 69%, but not high. 

Table 2. Tree-based targeting performance 

  Real status 
 FIES = 0 FIES = 1 Total 

Predicted 

status 

FIES = 0 82 202 284 

FIES = 1 205 822 1,027 

Total 287 1,024 1,311 

  
Correctly 
Predicted 

29% 
Specificity 

80% 
Sensitivity 

69% 
Accuracy 

Notes: the predicted status refers to the predicted out-of-sample food-insecure households using the train set (before the 
COVID-19). The real status represents the observed food-insecure households of the test set (after the COVID-19). FIES 
is a binary outcome that takes value 1 if the household is predicted (predicted status) or reported (real status) to be food 
insecure and 0 otherwise.  

Despite operating in a relatively data-poor environment, the simple machine learning model depicted 

in Figure 1 can anticipate more than three out of four households experiencing food insecurity due to 

the COVID-19 shock. This gives an idea of the significant potential of machine learning techniques 

in identifying food insecurity, and vulnerability hotspots, in line with the findings of other recent 

contributions (Aiken et al., 2022; Garbero & Letta, 2022; McBride et al., 2021; Zhou et al., 2021). 

However, the targeting performance of the classification tree is still imperfect and, overall, 

unsatisfactory, as the tree tends to overpredict food insecurity and maximize sensitivity at the expense 

of specificity and overall accuracy.  

6. Sensitivity checks 

In this section of the paper, we present a series of sensitivity checks to further examine the robustness 

of our findings. Sensitivity checks are crucial to assess the stability and reliability of our main results, 

ensuring that they are not overly dependent on specific modelling assumptions or data variations. By 

conducting these additional analyses, we aim to address potential concerns and strengthen the overall 

validity of our research. 

6.1. Different vulnerability cut-offs 

It is important to highlight that the model’s underperformance showed in Table 1 is not exclusively 

linked to the choice of the median as the cut-off for distinguishing between vulnerable and non-
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vulnerable households. This is evident, as reported in Table 3, where we present supplementary 

results utilizing alternative cut-off points, specifically the 25th and 75th percentiles of the vulnerability 

distribution. Remarkably, the outcomes remain consistent, suggesting that the model’s suboptimal 

performance is not reliant on a specific threshold choice. 

Table 3. Vulnerability targeting performance – VTFI model – different cut-offs 

  Real status 
25th percentile cut-off Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 83 165 284 

Vulnerability = 1 21 47 68 

Total 104 212 316 

  
Correctly 
Predicted 

80% 
Specificity 

22% 
Sensitivity 

41% 
Accuracy 

75th percentile cut-off Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 95 197 292 

Vulnerability = 1 9 15 24 

Total 104 212 316 

  
Correctly 
Predicted 

91% 
Specificity 

7% 
Sensitivity 

35% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity calculated 
considering all the states of the world using the train set (before the COVID-19). This takes value 1 if the household is 
classified as vulnerable, defined as those above the 25th and 75th percentile of the VTFI distribution, and 0 otherwise. The 
real status represents the observed income losses and food insecurity outcome in the test set (after the COVID-19). Income 
losses & FI is a combined binary variable which takes value 1 if the household reported both to have lost income and 
experienced food insecurity conditions during the pandemic. 

6.2. Worst-case scenario 

The disappointing outcome from the VTFI model results could be attributed to the fact that the 

COVID-19 is indeed an extreme scenario which could be mimicked by the simultaneous occurrence 

of the many idiosyncratic and covariate shocks that plague households’ welfare in developing 

contexts (Upton et al., 2021). However, the estimated vulnerability model assigns a very low 

probability to such a pandemic “state of the world” since it is considered a “fat-tail risk”, namely a 

devastating but extremely rare event.  

To address this issue, a sensitivity analysis can be conducted on the pre-COVID-19 data by replacing 

the vulnerability measurement with one calculated under the assumption that all shocks occur 

simultaneously. This approach trains the model to consider a rare event as certain (probability 

assigned = 1) and may improve its ability to identify vulnerable households in the face of a “systemic 

risk”. Table 4 displays the outcome for this worst-case scenario.  

Although this model specification seems to perform slightly better in terms of sensitivity and 
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accuracy, the results are still disappointing, meaning that the targeting failures are not due to an 

inherent inability of standard vulnerability models to spot and adequately consider extreme scenarios 

and catastrophic disasters. 

Table 4. Vulnerability targeting performance (worst-case scenario) – VTFI model 

  Real status 
 Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 78 152 230 

Vulnerability = 1 26 60 86 

Total 104 212 316 

  
Correctly 
Predicted 

75% 
Specificity 

28% 
Sensitivity 

44% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity calculated 
considering only the worst-case scenario (the household experiences all the shocks simultaneously) using the train set 
(before the COVID-19). This takes value 1 if the household is classified as vulnerable and 0 otherwise. The real status 
represents the observed income losses and food insecurity outcome in the test set (after the COVID-19). Income losses & 
FI is a combined binary variable which takes value 1 if the household reported both to have lost income and experienced 
food insecurity conditions during the pandemic. 

6.3. Data comparability issue 

The discrepancy in data collection between the pre- and post-COVID-19 surveys poses an additional 

area of concern. It is important to highlight that, despite differences in data collection methods (face-

to-face versus phone-based), both survey types have undergone rigorous validation, demonstrating a 

high degree of statistical equivalence. The phone-based data have been carefully adjusted to address 

statistical biases resulting from the distinct collection modes. Notably, even though the pandemic has 

concluded, these phone-based surveys have now officially become part of the World Bank’s LSMS-

ISA collection. This inclusion aims to enhance the frequency and timeliness of panel surveys in client 

countries. Currently, they are integrated into ongoing data collection efforts in several countries, 

including Nigeria, and are regularly conducted alongside face-to-face surveys (Gourlay et al., 2021). 

However, to gauge the magnitude of this concern, we also employ the same analysis using only the 

pre-COVID-19 data for both the prediction and the test sets: the former is composed of the first three 

waves of the panel, and the latter is tested using the fourth wave. This test thus uses a fully harmonized 

pre-pandemic dataset of standard field surveys.  

Our main conclusions are not overturned by this check, and the results, summarized in Table 5, still 

report a disappointing performance in terms of predictive accuracy, suggesting that the poor 

performance is not linked to disparities in the data collection methods employed before and after the 

onset of COVID-19.  



 24 

Table 5. Vulnerability targeting performance (only using pre-COVID-19 dataset) – VTFI model 

  Real status 
 Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 833 260 1,093 

Vulnerability = 1 63 42 105 

Total 896 302 1,198 

  
Correctly 
Predicted 

93% 
Specificity 

14% 
Sensitivity 

73% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity calculated using the 
train set (the first three waves pre-COVID-19). This takes value 1 if the household is classified as vulnerable and 0 
otherwise. The real status represents the observed income losses and food insecurity outcome reported in the test set (the 
fourth wave pre-COVID-19). Income losses & FI is a combined binary variable which takes value 1 if the household 
reported both to have lost income and experienced food insecurity conditions in the wave before the COVID-19. 

6.4. Subsample analysis by treatment (lockdown) status 

In addressing concerns about the targeting approach, we acknowledge that one objection may be 

related to the inclusion of the full sample size of households in the post-COVID-19 phone surveys, 

without distinguishing between those exposed to non-pharmaceutical interventions (lockdowns, 

mobility restrictions, etc.) and those merely experiencing the spread of the contagion and the 

spillovers of the global pandemic. The COVID-19 pandemic has been global and determined a black-

out of within-country and international supply chains, triggering a deep recession that left no 

communities unaffected, especially in developing contexts. Indeed, as reported in the data section, 

even the questions of the Phone Surveys themselves make explicit reference to the arrival of the 

COVID-19 pandemic in asking interviewed households whether they had experienced income losses 

or food insecurity, regardless of their exposure to lockdown measures.  

We argue that all households in the post-COVID sample should be considered “treated” in the sense 

that they have been exposed to the COVID-19 crisis; therefore, it is essential to include all households 

in the targeting analysis. Nonetheless, to address this concern, we also conducted a subsample 

analysis focusing on households exposed to lockdowns (treated) and those not subjected to mobility 

restrictions (untreated), using the separate samples of the “lockdown” variable as employed by Amare 

et al. (2021).  

These results are reported below in Table 6 for households exposed to lockdowns (treated group) and 

in Table 7 for those not exposed to mobility restrictions (untreated group), for the analyses covering 

both all the states of the world and the worst-case scenario. Overall, the estimates are not significantly 

different and confirm the unsatisfactory performance of the targeting model in identifying the hardest-

hit households.  
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Table 6. Vulnerability targeting performance – VTFI model – Treated group 

  Real status 

All the states of the world Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 20 40 60 

Vulnerability = 1 2 7 9 

Total 22 47 69 

  
Correctly 
Predicted 

91% 
Specificity 

15% 
Sensitivity 

39% 
Accuracy 

Worst-case scenario Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 20 36 56 

Vulnerability = 1 2 11 13 

Total 22 47 69 

  
Correctly 
Predicted 

91% 
Specificity 

23% 
Sensitivity 

45% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity both for all the states 
of the world and the worst-case scenario (the household experiences all the shocks simultaneously) using the train set 
(before the COVID-19). This takes value 1 if the household is classified as vulnerable and 0 otherwise. The real status 
represents the observed income losses and food insecurity outcome in the test set (after the COVID-19) and in the 
subgroups of household exposed to lockdowns (treated). Income losses & FI is a combined binary variable which takes 
value 1 if the household exposed to lockdowns during the pandemic reported both to have lost income and experienced 
food insecurity conditions. 

 

Table 7. Vulnerability targeting performance – VTFI model – Untreated group 

  Real status 

All the states of the world Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 71 138 209 

Vulnerability = 1 11 27 38 

Total 82 165 247 

  
Correctly 
Predicted 

87% 
Specificity 

16% 
Sensitivity 

40% 
Accuracy 

Worst-case scenario Income losses & FI = 0 Income losses & FI = 1 Total 

Predicted 

status 

Vulnerability = 0 58 116 174 

Vulnerability = 1 24 49 73 

Total 82 165 247 

  
Correctly 
Predicted 

71% 
Specificity 

30% 
Sensitivity 

43% 
Accuracy 

Notes: the predicted status refers to the combined vulnerability to income losses and food insecurity both for all the states 
of the world and the worst-case scenario (the household experiences all the shocks simultaneously) using the train set 
(before the COVID-19). This takes value 1 if the household is classified as vulnerable and 0 otherwise. The real status 
represents the observed income losses and food insecurity outcome in the test set (after the COVID-19) and in the 
subgroups of household not exposed to lockdowns (untreated). Income losses & FI is a combined binary variable which 
takes value 1 if the household not exposed to lockdowns during the pandemic reported both to have lost income and 
experienced food insecurity conditions. 
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7. Discussion and conclusion 

In developing emergency interventions to address large-scale shocks, governments face the challenge 

of rebalancing exposure to myriad shocks in real time (Upton et al., 2021). On the other hand, 

knowing in advance which groups and communities are most at risk in case of a future shock would 

enable ex-ante preventive policies and resilience-building efforts aimed at minimizing exposure 

before the shock occurs. This is even more urgent in the current historical period, where new 

economic and political tensions are emerging, increasing the overall risk exposure of the most 

vulnerable households and their liquidity and behavioural constraints. For instance, the recent war in 

Ukraine caused a rise in food prices and fossil fuels, compromising access to food and food 

production for low-income countries and vulnerable groups (IMF, 2022). Similarly, due to its 

unpredictable nature, the COVID-19 pandemic caught most governments unprepared and revealed a 

shortage of both preventive and absorptive policies.  

In our study we conducted a COVID-19 stress test not to assess the well-documented welfare impacts 

of the pandemic ex-post, but rather to retrospectively evaluate the ex-ante forecasting ability of a 

well-established vulnerability measure in predicting food insecurity and informing policy targeting. 

Acknowledging the inherent challenges of making an exact comparison between ex-ante and ex-post 

statistics, we estimated the out-of-sample performances of the theory-based and data-driven 

approaches to the prediction of vulnerability to food insecurity. The results revealed disappointing 

performances, with the vulnerability model failing to accurately anticipate households experiencing 

food insecurity during the COVID-19 pandemic. Further examinations indicate that the poor 

performance observed is not attributable to discrepancies in the data collection method between pre- 

and post-COVID-19. In fact, similar results persist when conducting the analysis exclusively with the 

pre-COVID-19 dataset, thereby utilizing a fully harmonized dataset. 

On the other hand, we also tested whether a simple machine learning approach (classification tree), 

which is specifically suited for out-of-sample predictions, exhibits some skills in predicting a 

development outcome even when operating in the data-poor environment typical of developing 

contexts. While still suboptimal, the results show that the classification tree still fare much better than 

the theory-based model, suggesting that machine learning could represent a potential ally for the 

development of good targeting models.  

Readers may be concerned that models’ forecasting failures are not due to their intrinsic shortcomings 

in out-of-sample performances but to the ‘black swan’ nature of the COVID-19 crisis. Thus, we stress 
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again that the development literature agrees that, while unique in its causes, the pandemic shock is 

akin to a multi-stressor shock whose consequences have merely amplified the pre-existing 

vulnerabilities to different risk factors to which rural populations living in poor countries are routinely 

exposed (Upton et al., 2021). The lack of a satisfactory forecasting model hampers cost-effectiveness 

of the predictive tool and raises concerns, particularly considering that vulnerable households play a 

crucial role in determining the fragility of the entire food system chain, involving producers, 

processors, retailers, vendors, and consumers (FAO, 2021). From a methodological perspective, the 

results are in line with the evidence recently provided by Upton et al. (2022) on the disappointing 

out-of-sample performance of popular resilience metrics, and reinforce the view that predictive 

models of poverty, vulnerability, resilience, and other development outcomes should always be 

subject to rigorous empirical validation of their forecasting ability on held-out, unseen data. 

These findings are subject to a number of caveats: i) the presence of non-trivial data issues (for 

example, the focus on income losses rather than consumption behaviour due to the lack of 

consumption data in the post-COVID-19 surveys, the use of subjective measures of food insecurity, 

discrepancies in comparing different datasets) and the fact that all the methodologies were employed 

in data-poor environments with small sample sizes, which is especially penalizing for data driven 

routines; ii) the decision to proxy shock probabilities and corresponding severities using relatively 

limited panel data; iii) the lack of a rigorous identification of all the potential mechanisms at play in 

the vulnerability framework (for example, the hypothesis of non-transferability across states of the 

world of insurance mechanisms, whereby households can smooth away variations in outcomes over 

states of the world); and iv) the assumption underlying the simulations, namely that the COVID-19 

shock can be proxied by the simultaneous occurrence of all the food insecurity and income shocks 

households routinely face in rural developing contexts. 

Despite these caveats, we highlight a lack of appropriate forecasting and preventive tools. While 

mapping and targeting subnational vulnerability hotspots and food insecurity pockets is an adamant 

policy priority, standard models failed to address this need in the case of the COVID-19 shock. 

Therefore, efforts should be dedicated to refining targeting mechanisms and developing improved 

profiling methodologies to inform preventive interventions. This would enable policymakers to take 

action before shocks occur and implement early-warning systems to identify vulnerability hotspots 

in anticipation of future food system crises. In turn, this would enhance the cost-effectiveness and 

efficacy of resilience-building programs aimed at strengthening local agri-food systems' capacity to 

absorb shocks.  

From a data-oriented perspective, our work underscores the fact that predictive models, regardless of 



 28 

their theoretical soundness or computational power, are limited by the availability of data in data-

scarce environments. Lastly, improving the interoperability of traditional survey data with non-

conventional data sources, such as big data, crowdsourced data, and citizen-generated information, 

appears to be a promising route (Aiken et al., 2023).  
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Appendix A: Variables description and descriptive statistics  

Table A.1. Definition of the variables included in the analysis 

Variable name Definition Time period Source 

Vulnerability analysis (VTFI) – Machine learning analysis 

 Total income 
Log of the total household gross income 
(non-farm, wage, farm, and other 
income) 

2011 – 2019 LSMS - ISA  

 Death shock 
= 1 if the household has been affected 
by the death of a working member of the 
household 

2011 – 2019 LSMS - ISA  

 Illness shock 
= 1 if the household has been affected 
by the illness of a working member of 
the household 

2011 – 2019 LSMS - ISA  

 Food price shock 
= 1 if the household experienced an 
increase in the price of major food items 
consumed 

2011 – 2019 LSMS - ISA  

 Drought shock 
= 1 if the household experienced a 
drought shock 2011 – 2019 LSMS - ISA  

 Heavy rains/Flood   
shock 

= 1 if the household experienced a flood 
shock 2011 – 2019 LSMS - ISA  

 Age of the 
household head 

Age of the household head, in years 
2011 – 2019 LSMS - ISA  

 Female household 
heads 

= 1 if the household head is female 
2011 – 2019 LSMS - ISA  

 Household head can 
read and write 

= 1 if the household head can read and 
write 2011 – 2019 LSMS - ISA  

 Household size Number of members of the household 2011 – 2019 LSMS - ISA  

 Urban households = 1 if the household live in an urban 
area 2011 – 2019 LSMS - ISA  

 Non-agricultural 
wealth index (*) 

Index of non-agricultural assets held by 
the household 2011 – 2019 LSMS - ISA  

 TLU large 
ruminants 

Tropical Livestock Unit - large 
ruminants held by the household 2011 – 2019 LSMS - ISA  

 TLU small 
ruminants 

Tropical Livestock Unit - small 
ruminants held by the household 2011 – 2019 LSMS - ISA  

 TLU other animals 
Tropical Livestock Unit - other animals 
held by the household 2011 – 2019 LSMS - ISA  

 Year of the 
interview 

Year in which the household has been 
interviewed 2011 – 2019 LSMS - ISA  

(*) A factor analysis has been used to construct the variable indicating the non-agricultural wealth index, it includes 34 durable assets 

held by the household.  



 

Table A.2. Descriptive statistics 

Variable name Obs Mean SD Min Max 
Vulnerability analysis (VTFI)  

 Total income (log) 4,973 7.599 2.92 0 13.802 
 Non-farm income (log) 4,973 4.597 4.126 0 13.159 
 Farm income (log) 4,973 4.422 3.939 0 12.269 
 Death shock 5,000 0.072 0.258 0 1 
 Illness shock 5,000 0.044 0.204 0 1 
 Food-price shock 5,000 0.099 0.299 0 1 
 Drought shock 5,000 0.211 0.408 0 1 
 Heavy rains/Flood shock 5,000 0.242 0.429 0 1 
 Age of the household head 5,000 52.33 14.272 18 100 
 Female household head 5,000 0.182 0.386 0 1 
 Household head can read and 
write 5,000 0.675 0.469 0 1 

 Household size 5,000 6.834 3.497 1 33 
 Urban household 5,000 0.293 0.455 0 1 
 Non-agricultural wealth index 4,986 0.044 0.544 -0.647 5.127 
 TLU large ruminants 4,648 0.015 0.91 -2.195 20.534 
 TLU small ruminants 5,000 0.42 3.274 0 163.75 
 TLU other animals 5,000 0.223 0.636 0 14.4 
 Year of the interview  5,000 0.058 0.779 0 50 

Targeting analysis  
Total income loss & Food 
Insecurity 316 0.671 0.47 0 1 

Machine learning analysis  
Train sample (pre-COVID-19)      

FIES  3,715 0.145 0.352 0 1 
Test sample (post-COVID-19)      

FIES  1,311 0.781 0.414 0 1 

 

 

 

 

 

 

  



 

Appendix B: Methodological Annex 

- Confusion matrix 

After estimating our models, we gauge their performance on out-of-sample data in the testing set by 

employing confusion matrices. These matrices enable a comparison between predicted and actual 

values for our binary outcomes, serving as a widely recognized analytical tool for evaluating the 

effectiveness of predictive models in classification tasks. In the context of binary classification 

problems, the confusion matrix is a simple two-way table, as illustrated below: 

Table B.1. Example of confusion matrix for a binary classification 

  Real status  
 Y = 0 Y = 1 

Predicted 

status 
Y = 0 True negatives False negatives 

Y = 1 False positives  True positives 

 Correctly 
Predicted Specificity Sensitivity Accuracy 

The True negatives cell contains those negative cases (Y = 0) that were correctly identified. The True 

positives cell includes the positive cases (Y = 1) correctly identified. The other two cells contain the 

observations erroneously classified by the model: False negatives (Type II error) in which households 

are predicted to be non-vulnerable to food insecurity before the shock but proved to be food insecure 

after the shock, and False positives (Type I error) in which households are predicted to be vulnerable 

to food insecurity before the shock but proved to be food secure after the shock. The total accuracy 

of the predictive model is given by the sum of the True negatives and True positives cells, divided by 

the total number of observations. 

The Specificity of the model, and thus its ability to correctly classify negative cases, is given by the 

number of observations in the True negatives cell divided by the number of negative observations. In 

the same way, the Sensitivity of the model, its ability to correctly predict positive cases only, is the 

number of units in the True positives cells divided by the total number of positive cases. Finally, the 

Accuracy is a general measure of how well the model performs overall, considering both positive and 

negative predictions. It is calculated as the ratio of correct predictions (true positives + true negatives) 

to the total number of observations. 
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