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Abstract

This paper examines capacity-constrained oligopoly pricing with sellers who seek myopic
improvements. We employ the Myopic Stable Set stability concept and establish the exis-
tence of a unique pure-strategy price solution for any given level of capacity. This solution
is shown to coincide with the set of pure-strategy Nash equilibria when capacities are large
or small. For an intermediate range of capacities, it predicts a price interval that includes the
mixed-strategy support. This stability concept thus encompasses all Nash equilibria and of-
fers a pure-strategy solution when there is none in Nash terms. In particular, it provides a
behavioral rationale for di�erent types of pricing dynamics, including real-world economic
phenomena such as Edgeworth-like price cycles, price dispersion and supply shortages.
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� Introduction

A common assumption in the literature on oligopoly pricing is that firms aim to maximize
their profits.1 In game-theoretic terms, players are presumed to pick best-responses to each other’s
choices. Although it may be reasonable to assume such maximizing behavior, there are com-
pelling arguments for why sellers sometimes make suboptimal decisions. They simply need not
be fully rational, for instance, or makemistakes. Also, theymight lack the information to identify
their most preferred alternative. For example, a firm may not be able to precisely determine its
profit-maximizing price ex ante and regret its decision ex post, i.e., after it has observed the actual
choices of its competitors.

With this in mind, this paper o�ers a novel perspective on oligopoly pricing by postulating
that sellers are myopic and simply aim to improve upon their current situation. Specifically, we
analyze a model of price competition with capacity constraints under the assumption that firms
choose better- rather than best-responses. This in particular means that they can, but may not,
behave like the neoclassical profit-maximizing firm.

Under this assumption, we employ the concept ofMyopic Stable Set (MSS),whichwas recently
introduced by Demuynck, Herings, Saulle and Seel (2019a). A set of price profiles is myopically
stable when it satisfies three conditions: deterrence of external deviations, asymptotic external
stability and minimality. The ‘deterrence of external deviations’ requirement holds when none
of the sellers gains by moving from a price profile in the MSS to a price profile outside the MSS.
‘Asymptotic external stability’ ensures that from any price profile outside the set it is possible to
get arbitrarily close to a price profile inside the MSS through a sequence of domination steps.
Finally, ‘minimality’ holds when the MSS is minimal with respect to set inclusion.

We establish the existence of a uniqueMSS for any given level of capacities. In terms of charac-
terization, we show that if the set of pure-strategy Nash equilibria is nonempty, then it coincides
with the MSS. A corollary to this is that the MSS reduces to the pure-strategy solutions that ex-
ist for su�ciently large or small production capacities. If capacities are in an intermediate range,
then typically there is no pure-strategyNash equilibrium. In these cases, there is amixed-strategy
Nash equilibrium, the support of which is shown to be contained in the MSS. The MSS therefore
also permits price dispersion, but the range of possible ‘sales’ is wider than in a mixed-strategy
Nash equilibrium. Taken together, we then find that the behavioral assumption of sellers simply
seeking myopic improvements does not qualitatively a�ect existing (Nash) price predictions.

The perspective taken in this paper has, however, several advantages over the standard Nash
approach to oligopoly pricing and to capacity-constrained price competition in particular. The
MSS solution concept, for example, rests on a less-stringent behavioral assumption since sellers
are supposed to behavemyopically and choose better- rather than best-responses. Yet, they never-

1An in-depth discussion of classical models of oligopoly pricing is provided by Vives (1999).
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theless charge precisely the same prices as they would have in a pure-strategy Nash equilibrium.
Moreover, theMSS o�ers a solution in pure strategies when there is none in Nash terms. In these
cases, and similar to the mixed-strategy solution, the MSS comprises a range of prices. In fact,
we find that it permits larger price fluctuations than in a mixed-strategy Nash equilibrium. Yet,
this price dispersion results from sellers following pure rather than random strategies.2 TheMSS
is therefore a unifying concept in that it encompasses all the existing pure- and mixed-strategy
Nash equilibria in an intuitive and natural fashion.

By o�ering a behavioral foundation for oligopoly pricing, this research contributes to the
emerging literature on behavioral industrial organization as recently reviewed by Heidheus and
Kőszegi (2018). Thus far, research in this field hasmainly focused on psychological factors on the
demand side. As indicated by Tremblay and Xiao (2020), however, there is increasing attention
for analyzing behavioral aspects on the supply side. The application of the MSS stability concept
to oligopoly pricing contributes to this research agenda. In particular, it helps shedding light on
some real-world economic phenomena such as price dispersion, supply shortages and Edgewor-
thian price cycles. For instance, we find that the MSS ceteris paribus expands with the size of the
biggest market player, thereby admitting larger price dispersion. The MSS also provides a ratio-
nale for di�erent types of pricing dynamics, including the following two interesting possibilities:
(1) A state of hyper-competition with corresponding supply shortages, and (2) Edgeworth-like
price cycles.

Myopic oligopoly pricing can lead to a state of hyper-competition in which sellers collectively
price below the market-clearing price. The logic is roughly as follows. Starting from a market-
clearing situation, the biggest market player may have an incentive to hike its price and operate
as a monopolist on its contingent demand curve. This creates an incentive for smaller producers
to hike their own prices and (approximately) match the price of the largest firm. The biggest
supplier can now improve its situation by shaving its price below the prices of its smaller-sized
rivals, leaving the latter worse o� than in the initial market-clearing situation. This, in turn,
makes prices below the market-clearing price a better-response. Myopic oligopoly pricing may
therefore induce a state of hyper-competition inwhichmyopic sellers end up setting a price below
market-clearing levels. The MSS consequently provides a rationale for rationing, i.e., a situation
in which demand exceeds supply.

The MSS moreover o�ers an explanation for Edgeworth-like price cycles. Edgeworth (1925)
pointed out the possibility of producers not being able to meet their demand.3 If so, prices may

2Several authors have argued that mixed strategies might be implausible in the context of oligopoly pricing games.
See Friedman (1988) and, more recently, Edwards and Routledge (2019).

3Edgeworth (1925) examines price competition under capacity constraints. Edgeworth (1922) considers the equiv-
alent case in which suppliers are not willing to meet the demand forthcoming to them. This may occur when the pro-
duction technology exhibits decreasing returns to scale, for example. Note also that, since the MSS is a static solution
concept, it essentially provides an intuitive explanation for particular price patterns following myopic better-responses.
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never stabilize but instead oscillate indefinitely between some upper and lower bound. More
specifically, his analysis hints at the emergence of asymmetric price cycles that essentially consist
of two parts. If prices are relatively high, then sellers have an incentive to slightly undercut each
other. This leads prices to decrease gradually until a floor is reached (the price war phase). At that
point, firms have an incentive to hike their price and act as amonopolist on their residual demand
curve (the relenting phase). This latter incentive comes from (i) the fact that cheaper supplierswill
not meet all demand forthcoming to them, and (ii) part of these unserved customers still prefers
to buy at the higher price. This in turn provides an incentive for low-priced sellers to hike their
price, which induces a new cycle.4 Several empirical studies have documented the existence of
Edgeworth-like price cycles in practice. Eckert (2003) and Noel (2007a,b), for example, provide
evidence of such ‘sawtooth shape’ price patterns in Canadian retail gasoline markets. Among
other things, they show that large firms are likely to initiate the relenting phase through a price
hike, whereas small firms take the lead in the price war phase. Wang (2008) reports on collusive
price cycles in an Australian retail gasoline market.5 More recently, Zhang and Feng (2011) and
Hauschultz andMunk-Nielsen (2020) have shown the presence of Edgeworth-like price patterns
in online search-engine advertising and pharmaceutical markets, respectively.

This paper is naturally related to the rich body of theoretical work on capacity-constrained
price competition, a literature that basically can be divided in two parts. One focuses on the ex-
istence and characterization of the mixed-strategy Nash equilibrium. Such mixed-strategy solu-
tions have been provided by Beckmann (1965), Levitan and Shubik (1972), Osborne and Pitchik
(1986), Allen and Hellwig (1986), and Deneckere and Kovenock (1992), amongst others. An-
other part aims to restore the existence of a pure-strategy Nash equilibrium by rationalizing why
residual demand for a high-priced seller would be significantly reduced or even eliminated. For
example, Dixon (1990) shows that producers may no longer have an incentive to act as a monop-
olist on their contingent demand curve when there are cost to turning customers away. Other
solutions along this line include Dixon (1992), Tasnádi (1999) and, more recently, Edwards and
Routledge (2019). All this work concentrates on Nash solutions and is consequently based on
best- rather than better-responses, which is the focus of our analysis.6

Capacity-constrained price competition has also been studied in controlled experimental lab-

For an analysis and discussion of Edgeworthian price cycles based on myopic best-responses, see De Roos (2012).
4Absent capacity constraints, Maskin and Tirole (1988) show how asymmetric price cycles may emerge in equilib-

rium when firms pick prices sequentially from a grid.
5De Roos and Smirnov (2021) analyze theoretically the pricing behavior of a less than all-inclusive price cartel and

provide a rationale for collusive Edgeworth-like price cycles. There is also evidence for asymmetric price cycles in
European retail gasoline markets. See, e.g., Foros and Steen (2013) and Linder (2018).

6It is worth noting that both better- and best-response dynamics are well-known concepts in the game-theoretic
literature on learning. A central issue in this work is whether, and under what conditions, better- and best-response
adjustments lead to convergence to an equilibrium. See, for example, Milgrom and Roberts (1990), Monderer and
Shapley (1996), Friedman and Mezzetti (2001) and Arieli and Young (2016).
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oratory settings. Kruse, Rassenti, Reynolds, and Smith (1994), for example, conducted a series
of twenty experiments to test the wide variety of theoretical pricing predictions. Among other
things, they find a general price decline during the first periods. Towards the middle or the end,
however, they observe patterns of upward and downward price swings. This is confirmed by
Fonseca and Normann (2013) who also find prices to move up and down for a wide range of
capacities. Interestingly, they conclude that:7

...the data are better explained by Edgeworth-cycle behavior. Not only are average
prices closer to the predicted Edgeworth-cycle prices, but we cannot reject the hypothesis
that firms are engaging in some form of myopic price adjustment.

The new behavioral foundation that we present in this paper indeed provides a rationale for such
complex oligopoly pricing dynamics.

The remainder of the paper is organized as follows. The next section presents the model.
Section 3 o�ers a detailed description of the MSS solution concept. Section 4 contains our main
findings. These findings are illustrated by means of a linear demand example in Section 5. Sec-
tion 6 concludes. The proofs are relegated to the Appendix.

� Model

Consider a homogeneous-goodprice-setting oligopolywith a finite set of firms: N “ t1, . . . , nu.
Each firm i P N has a production capacity ki ° 0 and produces to order at constantmarginal cost,
which we normalize to zero.8 Without loss of generality, we assume that k1 • k2 • . . . • kn ° 0

so that firm 1 is the (weakly) largest and firm n is the (weakly) smallest firm in the market. Total
industry capacity is given by K “ ∞

iPN ki and K´i “ ∞

jPNztiu kj is the combined production
capacity of all firms other than i.

Let market demand be given by the functionD : R` ›Ñ R`. We make the standard assump-
tions that Dp.q has a finite upper bound (Dp0q) and is twice continuously di�erentiable, with
D1p.q † 0. There is a choke price ↵ ° 0 and therefore Dp.q “ 0 at prices larger or equal than ↵.
Sellers pick prices simultaneously and we denote supplier i’s strategy space by Pi “ r0,8q so
that P “ ±

iPN Pi is the set of all possible strategy profiles.
Since products are homogeneous, consumers prefer to buy from a supplier setting the lowest

price. As firms may face capacity constraints, however, it is possible that only part of them will
be served in which case higher-priced sellers might still receive demand. To specify individual
(residual) demand, let ⌦ppiq “ tj P N |pj “ piu and �ppiq “ tj P N |pj † piu denote the set of

7Fonseca and Normann (2013, p. 201), italics is ours.
8There are some recent contributions that analyze price-quantity competition under the assumption that produc-

tion precedes sales. See, e.g., Montez and Schutz (2021) and Tasnádi (2020).
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firms that price at and below pi, respectively. Furthermore, let p´i “ pp1, . . . , pi´1, pi`1, . . . , pnq
indicate the prices of all firms other than i. Demand for firm i’s products is then given by
Dippi, p´iq “ Dppiq when all its competitors charge a strictly higher price. If there is at least
one other seller setting the same price, then its demand is:

Dippi, p´iq “ max

$

&

%

ki
∞

jP⌦ppiq kj

¨

˝Dppiq ´
ÿ

jP�ppiq
kj

˛

‚, 0

,

.

-

.

Finally, if firm i sets the strictly highest price in the industry, its demand is:

Dippi, p´iq “ max tDppiq ´ K´i, 0u .

Thus, (i) customers first visit the lowest-priced seller(s) at the set prices, (ii) at equal prices,
demand is allocated in proportion to production capacity, and (iii) rationing is e�cient.9

Profits are then given by:

⇡ippi, p´iq “ pi ¨ mintki, Dippi, p´iqu, for all i P N.

To facilitate the ensuing analysis, we denote firm i’s profit by ⇡`
i ppiq when pi is the strictly low-

est price and by ⇡h
i ppiq when pi is the strictly highest price in the industry. Furthermore, we

assume that ⇡h
i ppiq “ pipDppiq ´ K´iq is strictly concave when there is residual demand for the

highest-priced firm (i.e., when Dppiq ° K´i) and we write p˚
i “ argmaxpi ⇡

h
i ppiq to indicate

the corresponding residual profit-maximizing price.10 Also, assuming that K † Dp0q, let p be
the price for which market demand equals total production capacity (Dppq “ K) and let p “ 0

when K • Dp0q. We refer to p as the market-clearing price.11 Figure 1 provides a graphical
illustration.

The next result relates an individual price choice to the market-clearing price p. Specifically,
it shows that if industry capacity is su�ciently small (i.e., K † Dp0q), then ⇡ippi, p´iq “ piki

provided that Dppiq • K. That is, a firm produces at capacity whenever there is excess demand
at the set price.

Lemma 1. If 0 † pi § p, then ⇡ippi, p´iq “ piki, for all i P N .

As is well-known, existence of a pure-strategyNash equilibrium in capacity-constrained pric-
ing games critically depends on available production capacities. If capacities are large enough in

9Such a surplus maximizing scheme is also used by Levitan and Shubik (1972), Kreps and Scheinkman (1983),
Osborne and Pitchik (1986) and Edwards and Routledge (2019), amongst others.

10We assume strict concavity for analytical convenience. Strictly speaking, it would be su�cient to impose a weaker
requirement such as single-peakedness.

11To economize on notation, we refer to p sometimes as a price and sometimes as a price profilewith all firms pricing
at p. It is clear from the context what is meant. Note further that, since production is to order, there are in fact many
market-clearing prices in this model.
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pi

⇡i

p D´1pk2q D´1pk1qp˚
1

⇡1ppq
⇡h
1 pp˚

1q

⇡h
1

⇡`
1

Figure 1: An illustration of firm 1’s profit function when n “ 2.

relation to market demand, then there is a symmetric ‘Bertrand-type’ pure-strategy solution in
which all sellers price at cost. A pure-strategy equilibrium also exists when capacities are su�-
ciently small in the sense that market demand is elastic at all prices above p.12 In that situation,
all suppliers charge the same market-clearing price and produce at capacity. Finally, for an in-
termediate range of production capacities, there is no pure-strategy Nash solution. There does
exist a mixed-strategy equilibrium, however, which will be elaborated on in Section 4.3 below.

� Solution Concept

In the following, we do not take the standardNash approach. Instead, we employ the concept
ofMyopic Stable Setwhich is based on the idea that sellers may simply aim to improve upon their
situation andnot necessarilymaximize their profits. In this section, we introduce this equilibrium
concept in detail.

Consider a price profile p “ pp1, . . . , pnq P P . We say that an alternative price profile p1 P P

dominates pwhen there is a firm that can unilaterally deviate to p1 and earn a higher profit under
p1 than under p. That is, given the strategy profile p, this firm has a better-reply since it can
myopically improve itself by inducing price profile p1.

Definition 1. Let p, p1 P P be two price profiles. The price profile p1 dominates p, p1 ° p, if there exists a
firm i P N such that ⇡ipp1q ° ⇡ippq and p1

´i “ p´i.
12For a detailed analysis of this possibility, see Tasnádi (1999).
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Next, given some price profile p P P , we write fppq to describe the subset of P consisting of
all dominating price profiles in conjunction with p:

fppq “ tpu Y tp1 P P |p1 ° pu.

Given f , let the set of pure-strategy Nash equilibria be denoted by:

NE “ tp P P |fppq “ pu.

To capture the better-reply dynamics that can be generated by the firms, we define the -fold
iteration fppq as the subset of P that contains all the price profiles obtained by a composition of
dominance correspondences of length  P N. Thus, p1 P fppq when there is a p2 P P such that
p1 P fpp2q and p2 P f´1ppq. Note further that if  § t, then fppq Ñ f tppq, for all , t P N. We
indicate the set of prices that can be reached from p by a finite number of dominations by fNppq:

fNppq “
§

PN
fppq.

Given p1, p P P , we say that a price profile p1 asymptotically dominates p when, starting from p,
it is possible to get arbitrarily close to p1 through a finite number of myopic improvements.

Definition 2. A price profile p1 P P asymptotically dominates p P P if there exists a number  P N and
a price profile p2 P f ppq such that ||p1 ´ p2|| † ✏, for all ✏ ° 0.

We denote by f8ppq the set of all strategy profiles in P that asymptotically dominate p. Formally,

f8ppq “ tp1 P P |@✏ ° 0, D P N, Dp2 P fppq : ||p1 ´ p2|| † ✏u.

Notice that the set f8ppq coincides with the closure of the set fNppq.
We now have all the ingredients available to define the Myopic Stable Set (MSS) for the

capacity-constrained pricing game:

Definition 3. LetG “ tN, pPi,⇡iqiPNu be a capacity-constrained pricing game as specified in Section 2.
The setM Ñ P is a Myopic Stable Set when it is closed and satisfies the following three conditions:

i. Deterrence of External Deviations: For all p P M, fppq Ñ M.

ii. Asymptotic External Stability: For all p R M, f8ppq X M ‰ H.

iii. Minimality: There is no closed setM 1 à M that satisfies conditions i and ii.

Suppose there is a set M of myopically stable price profiles. ‘Deterrence of External Deviations’
means that no firm can profitably deviate to a price profile outside M . ‘Asymptotic External
Stability’ requires that any price profile outsideM is asymptotically dominated by a price profile
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in M . Hence, from any price profile outside M it is possible to get arbitrarily close to one in M

by a finite number of myopic improvements. Finally, ‘Minimality’ means that there is no smaller
(closed) set for which the first two conditions are met. Roughly speaking, the MSS can thus be
pictured as a set of price profiles that, once entered through the dominance dynamics, is never
left.

� Results

For normal form games, Demuynck, Herings, Saulle and Seel (2019a) prove the existence of
a unique MSS when the strategy space is compact and the payo� functions are continuous. The
continuity assumptions are not satisfied in the capacity-constrained pricing model, however. In
this section, we show that this game also possesses a uniqueMSS for any given level of capacities.
Moreover, we characterize this solution and compare it to the set of pure-strategy Nash equilib-
ria as well as to the support of the mixed-strategy Nash equilibrium. Among other things, we
establish that the MSS encompasses all existing Nash equilibrium solutions.

�.� Pricing Equilibria with Large or Small Capacities

We begin with exploring the relationship between the MSS and the set of pure-strategy Nash
equilibria. Towards that end, denote a subset of sellers S Ñ N minimal when

∞

jPSztiu kj • Dp0q,
for all i P S. That is, each combination S has su�cient capacity to meet market demand at a zero
price when a member leaves the coalition. Let us now present conditions under which the set of
pure-strategy Nash equilibria NE is nonempty.13

• IfK´1 • Dp0q, then
NE “

!

p P P |p P ±

iPSt0u ˆ ±

iPNzSr0,8q
)

.

• IfK § Dpp˚
1q, then

NE “  

p P P |pi “ p ° 0, for all i P N
(

.

Proposition 1. Let G be a capacity-constrained pricing game as specified in Section 2. The set NE is the
set of pure-strategy Nash equilibria of G.

Simply put, there are two types of pure-strategy Nash equilibria. If industry capacity is suf-
ficiently large, then there is a set of pure-strategy solutions, all of which have firms making zero
economic profit. One solution in this case is the symmetric ‘Bertrand-type’ pure-strategy equi-
librium in which all firms price at cost. There are also many asymmetric equilibria in which part

13Vives (1986) provides conditions for non-emptiness of the set of symmetric pure-strategy Nash equilibria under
a surplus maximizing scheme. In Proposition 1, we additionally admit asymmetric pure-strategy Nash equilibria.
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of the firms price above cost and have no demand. If aggregate capacity is su�ciently small, then
there is a symmetric pure-strategy Nash equilibrium in which each firm sets its price equal to the
market-clearing price.

To better illustrate the relation between the MSS and the set of pure-strategy Nash equilibria,
we now introduce the so-called weak improvement property.

Definition 4. A normal form game satisfies the weak improvement property when NE ‰ H and f8ppqX
NE ‰ H for each price profile p R NE.

A normal form game possesses the weak improvement property when any non-Nash equilibrium
strategy profile converges to a Nash equilibrium through a finite sequence of myopic improve-
ments. Demuynck, Herings, Saulle and Seel (2019a) extend previous results by Monderer and
Shapley (1996), Friedman and Mezzetti (2001) and Dindõs and Mezzetti (2006) by showing
that supermodular games (Friedman and Mezzetti, 2001) and pseudo-potential games (Dubey,
Haimanko and Zapechelnyuk , 2006), including games of strategic complements or substitutes
with aggregation (e.g., Cournot oligopolies), exhibit theweak improvement property. The capacity-
constrained pricing model does not belong to any of the aforementioned game classes, however.
Nevertheless, we establishwith the next proposition that this type of games also exhibit the weak
improvement property.

Proposition 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is nonempty, then this game exhibits the weak improvement property.

This result states that any price profile that is not a pure-strategy Nash equilibrium is asymp-
totically dominated by the pure-strategy solution(s). That is, from any price profile not in NE
it is possible to get arbitrarily close to a pure-strategy equilibrium by a finite number of myopic
improvements.

Using the preceding results, we now show that the set of pure-strategy equilibria coincides
with the MSS whenever the former is nonempty.

Theorem 1. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is nonempty, then NE is the unique Myopic Stable Set.

The above approach captures the potential pricing dynamics of the game. This includes prices
that may emerge under myopic improvements and in particular also the pure-strategy Nash
equilibrium prices. More specifically, following Proposition 2, there is a price path of myopic
improvements from any non-Nash price profile to a pure-strategy Nash profile. Once the pricing
dynamics enters the set NE, however, there is no way out. Indeed, by the very nature of a Nash
equilibrium, none of the sellers can profitably deviate to a price profile outside NE. Combining
these two forces yields the result of Theorem 1; that is, there is a unique MSS that coincides with
the set of pure-strategy Nash equilibria NE.

9



�.� Myopic Stability with Intermediate Capacities

As indicated above, the set of pure-strategyNash equilibria is empty in the capacity-constrained
pricing model when capacities are in an intermediate range (i.e., whenDpp˚

1q † K † Dp0q `k1).
We now proceed with analyzing the MSS for these types of cases. To that end, we first introduce
twonotions that are useful in the ensuing analysis; the iso-profit price and thehyper-competitive

price.

Definition 5. For each firm i P N , the iso-profit price is:

pi “
$

&

%

min

 

pi P Pi|⇡h
i ppiq “ p ¨ ki with pi ‰ p

(

if Dp0q ° K´i ° Dpp˚
i q ´ ki,

p otherwise.

Given that all its competitors charge a lower price, the iso-profit price of firm i is the lowest price
above the market-clearing price p for which it receives the same profit as when it would price
at p. It should be emphasized that the iso-profit price di�ers from the market-clearing price
only when the following two conditions hold. First, firm i must face residual demand for some
prices (i.e., Dp0q ° K´i). Second, its residual profit-maximizing price must exceed the market-
clearing price, which requires a su�ciently large capacity (i.e., ki ° Dpp˚

i q ´ K´i). If either of
the two conditions is violated, then the iso-profit price coincides with the market-clearing price.
A detailed analysis of the various scenarios is provided in Lemma 2 below.

Definition 6. For each firm i P N , the hyper-competitive price is:

rpi “
!

mintpi P Pi|⇡h
i pp1q “ pi ¨ ki

)

.

In words, the hyper-competitive price is the lowest price for which a firm obtains the same profit
as when it sets the iso-profit price of the largest seller, given that this iso-profit price is the strictly
highest price in themarket. A graphical illustration of these two concepts is provided in Figure 2.

Let us now present several results that establish some useful properties with regards to the
iso-profit and hyper-competitive prices. Part (i) of Lemma 2 gives conditions under which the
iso-profit price exceeds the market-clearing price and shows that the iso-profit price is increas-
ing in capacity. Part (ii) and (iii) describe when the iso-profit price coincides with the market-
clearing price, which is the case when the firm is su�ciently small. Part (ii) captures the possibil-
ity that a firm faces residual demand, butwhere its residual profit-maximizing price is lower than
the market-clearing price. Part (iii) shows the possibility that a firm faces no residual demand at
any price. In all cases, it holds that the iso-profit price of the largest firm is strictly positive and
above the market-clearing price.
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pi

⇡i

rp2 p p1 D´1pk1q D´1pk2q

⇡1ppq
⇡2ppq
⇡2pp1q

Figure 2: An illustration of the iso-profit price p1 and the hyper-competitive price rp2.

Lemma 2. Suppose there is no pure-strategy Nash equilibrium.
(i) If Dp0q ° K´i ° Dpp˚

i q ´ ki, for all i P N , and ki ° kj , for any i, j P N , then pi ° pj ° p • 0.
(ii) For all i P Nz t1u, if ki § Dpp˚

i q ´ K´i, then pi “ p. For firm 1, p1 ° p.
(iii) If Dp0q § K´m with n • m ° 1, then pi “ p “ 0 for each firm i “ m,m ` 1,m ` 2, ..., n weakly
smaller thanm.

The next lemma focuses on the hyper-competitive price. Part (i) of Lemma 3 shows that
hyper-competitive prices are (weakly) below the market-clearing price whenever the latter is
strictly positive. Part (ii) establishes a positive relationship between the hyper-competitive price
and firm size. Part (iii) states that the hyper-competitive price is zero for a highest-priced firm
not facing residual demand.

Lemma 3. Suppose there is no pure-strategy Nash equilibrium.
(i) If K † Dp0q and each firm i P Nzt1u is strictly smaller than firm 1, then 0 † rpi † p and rp1 “ p.
(ii) IfK † Dp0q and ki ° kj , then rpi ° rpj , for all i, j P N .
(iii) If Dp0q § K´i, then rpi “ p “ 0, for all i P N .

Finally, Lemma 4 relates the iso-profit and hyper-competitive prices to a firm’s profit. Part
(i) of Lemma 4 states that all sellers other than the largest one(s) can profitably raise their price
from the market-clearing price p to some higher price weakly below the iso-profit price of firm

11



1. Part (ii) complements this by showing that if firm 1 prices below p1 and any highest priced
seller i other than firm 1 prices at p1, then the latter can myopically improve by reducing its price
below the market-clearing price (see Figure 2).

Lemma 4. Suppose there is no pure-strategy Nash equilibrium. For all i P Nzt1u:
(i) If p1 “ p1, then ⇡ippi, p´iq ° ⇡ippq for pi P pp, p1q.
(ii) If p1 † p1, then ⇡ippi, p´iq ° ⇡h

i pp1q for pi P prpi, ps.

Now that we have introduced the iso-profit and hyper-competitive prices as well as some of
the corresponding properties, we can analyze the MSS when capacities are in an intermediate
range. Specifically, we show in the following that the MSS is given by:

M “
"

p P P

ˇ

ˇ

ˇ

ˇ

p̃i § pi § p1, @i P N

*

. (1)

Theorem 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is empty, thenM as given in (1) is the unique Myopic Stable Set.

To provide some intuition for this set solution, consider Figure 3 which gives a graphical
illustration. In Figure 3, the MSS is given by the shaded area. In principle, this area admits
di�erent types of pricing dynamics. The red arrows represent one particular better-response
price path. Starting at point ‘c’ firms are undercutting each other’s prices until point ‘a’. At ‘a’,
firm 1 hikes its price to p1 at point ‘b’. This, in turn, makes it a better-response for firm 2 to price
slightly below p1. As this example illustrates, the MSS naturally captures Edgeworth-like price
cycles and consequently provides a clear rationale for such ‘sawtooth shape’ price patterns.

Another striking possibility is that the smaller supplier may find it in his interest to set a price
below the market-clearing price. Such a scenario is depicted in Figure 4. As before, suppose that
both sellers set a price close to the market-clearing price at ’a’. By hiking its price, firm 1 may
then induce a price profile at ’b’. This, in turn, may trigger firm 2 to slightly undercut firm 1’s
price, which leads to a price profile around ’c’. In particular, firm 2 may set a price p1

2 P pp2, p1s.
Slightly undercutting p1

2 may then constitute a better-response for firm 1, which results in a price
profile at, say, ’d’. Yet, in that case it is profitable for firm 2 to reduce its price to p2

2 P pp̃2, ps, which
is below the market-clearing price. This possibility is also illustrated in Figure 2 above.

The MSS therefore provides a rationale for ‘price wars’ where all but the largest seller set a
price below the market-clearing price.

Corollary 1. If each firm i P Nzt1u is strictly smaller than firm 1, then there exists a price profile p P M

with p1 “ p and pi P rp̃i, pq.

12
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Figure 3: An illustration of the Myopic Stable Set when n “ 2 and k1 ° k2.

Note that such hyper-competitive price profiles are Pareto-dominated in that all producerswould
be better-o� (and no one worse o�) when pricing weakly above the market-clearing price. More-
over, this result highlights the possibility of an equilibrium shortage, i.e., a situation in which
market demand exceeds aggregate supply.

Finally, the next result relates the MSSM to the size distribution of firms.

Proposition 3. AssumeK † Dp0q. An increase in k1, ceteris paribus, leads to larger price dispersion as
reflected by a bigger Myopic Stable SetM .

Thus, in terms of comparative statics, expansion by the largest seller enables larger price dis-
persion. The reason is that an increase in firm 1’s capacity leads to a higher iso-profit price p1,
which implies a reduction of profits for firms pricing at p1. This, in turn, creates a downward
pressure on the hyper-competitive price since, by definition, this is the lowest price for which a
seller obtains the same profit as when it sets the iso-profit price of the biggest market player.

To sum up, Theorems 1 and 2 establish the existence and characterization of a uniqueMyopic
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Figure 4: An illustration of the Myopic Stable Set when n “ 2 and k1 ° k2.

Stable Set for any given level of capacities. In particular, they o�er a pure-strategy solution when
there is none in Nash terms. Let us now conclude this section by relating the MSS as derived
above to the mixed-strategy Nash equilibrium.

�.� Equilibria in Pure and Mixed Strategies

The existing literature has repeatedly shown that there is a Nash equilibrium in mixed strate-
gies under fairly weak assumptions.14 Specifically, since in the above capacity-constrained pric-
ing model demand is continuously decreasing and residual profit functions are continuous and
strictly concave, there exists an equilibrium in mixed strategies without ‘holes’ when capacities
are within an intermediate range, i.e., when Dpp˚

1q † K † Dp0q ` k1.15 Let us now consider this
mixed-strategy equilibrium in more detail.

To begin, recall that there exists a unique residual profit-maximizing price p˚
i for each firm

14Maskin (1986) provides a general analysis and discussion of these existence conditions.
15See, e.g., Deneckere and Kovenock (1992) and, more recently, Tasnádi (2020).
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i P N . By construction of the contingent demand functions Dppiq ´ K´i, it then follows that
pm • p˚

1 • p˚
2 • ... • p˚

n, where pm is the monopoly price. Note that pm approaches p˚
1 when

K´1 approaches zero.16 Since none of the sellers has an interest in charging a price in excess of
p˚
1 , this price constitutes the upper bound of the mixed-strategy support. Let the lower bound be

indicated by ppi, where ppi ‰ p˚
i is the price solving

p˚
i rDpp˚

i q ´ K´is “ min tppiki, ppi ¨ D pppiqu .

The mixed-strategy support is therefore given by:

K “
π

iPN
rppi, p

˚
1s Ä P .

Let us now relateK to theMSS. Recall that in this case there is a uniqueMSS given by the setM
(Theorem 2). The next result shows that theMSS permits larger price fluctuations in comparison
to the mixed-strategy equilibrium.

Theorem 3. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is empty, then K Ä M .

The intuition underlying this finding is as follows. Regarding the upper bound, with random
strategies no firm puts mass on prices above the maximizer of its (residual) profit function. By
contrast, the MSS permits such prices since prices in excess of the maximizer may still constitute
a better-response. The story is to some extent similar for the lower bounds. To see this, notice
that in a mixed-strategy equilibrium none of the sellers prices below p because either it can sell
its entire capacity at p or p “ 0. As there are no pure-strategy Nash equilibria in this case, there
is at least one firm that would be willing to hike its price when all firms price at p. It can be easily
verified that this holds for the largest firm. Since the higher-priced firm has residual demand, the
lower-priced firms are capacity-constrained. This provides an incentive to also raise their prices,
which in turn implies that no seller puts mass on prices weakly below p. By contrast, following
the definition of the MSS upper bound p1, p must be part of the MSS since profits are the same
at both prices. In fact, and as illustrated in Figure 2 and Figure 3 above, it is quite possible that
one or more sellers have a better-response below p.

In sum, the above analysis shows thatmyopic sellers set the sameprice as their profit-maximizing
counterparts when production capacities are either ‘large’ or ‘small’. For an intermediate range

16Since for any i, j P N , p˚
i and p˚

j are such that

Dpp˚
i q ` p˚

i D
1pp˚

i q “ K´i

and

Dpp˚
j q ` p˚

j D
1pp˚

j q “ K´j

K´i † K´j ô p˚
i ° p˚

j by concavity of firms’ (residual) profit functions.
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of capacities, the set of mixed-strategy profiles is a subset of theMSS. TheMSS thus encompasses
all Nash solutions. The next section provides an example illustrating these findings.

� Example

Let us examine a Bertrand-Edgeworth duopoly with linear market demand: Dppq “ 1 ´ p.
Demand for the products of firm i, i “ 1, 2 and i ‰ j, is then described by the following demand
structure:

Dippi, pjq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 ´ pi if pi † pj ,

ki
ki`kj

p1 ´ piq if pi “ pj ,

maxt0, 1 ´ pi ´ kju if pi ° pj .

(2)

It is assumed that k1 ° k2 so that firm 1 is strictly larger in terms of capacity. Below, we derive the
MSS for the entire range of production capacities and compare it to the standard Nash solution.

Let us begin with the situation where capacities are ‘large’ so that a pure-strategy Nash equi-
librium exists. Specifically, this is the case when each seller can serve the whole market at the
competitive price, i.e., when k1 ° k2 • 1. The Nash equilibrium is then such that both firms
charge a price equal to marginal cost and therefore (by Theorem 1):

M “ NE “ tp0, 0qu.

A pure-strategy Nash equilibrium also exists when capacities are su�ciently small. Specifically,
this is true when k1 § k1, where k1 solves the following equality:

k1 “ Dpp˚
1q ´ k2. (3)

In our linear example, firm 1’s residual profit-maximizing price is:

p˚
1 “ 1

2

p1 ´ k2q .

Substituting in (3) and rearranging gives the threshold value k1 “ p1 ´ k2q {2. Thus, for k1 § k1

(or, equivalently, k2 § 1 ´ 2k1), there is a pure-strategy solution for which the market clears.
Moreover, by Theorem 1, this pure-strategy Nash equilibrium coincides with the MSS:

M “ NE “ tp1 ´ k1 ´ k2, 1 ´ k1 ´ k2qu.

For the capacity ranges specified above there exists no nondegenerate mixed-strategy Nash
equilibrium. Let us now turn to the possibility where there is a nondegenerate Nash equilibrium
in mixed strategies. This is the case when k1 ° k1 and 1 ° k2 ° 1 ´ 2k1. To determine the lower
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bound of the mixed-strategy support, notice that firm 1 is indi�erent between being the high-
and the low-priced firm when:17

⇡h
1 pp˚

1q “ p˚
1 ¨ p1 ´ p˚

1 ´ k2q “ 1

4

p1 ´ k2q2 “ ⇡`
1 ppp1q “ pp1 ¨ mintk1, 1 ´ pp1u,

so that

pp1 “ 1

4k1
p1 ´ k2q2 when k2 § 1 ´ a

1 ´ p2k1 ´ 1q2,

and

pp1 “ 1

2

´ 1

2

b

2k2 ´ k22 when 1 ´ a

1 ´ p2k1 ´ 1q2 † k2 § 1.

The mixed-strategy support of this Bertrand-Edgeworth game is therefore given by:

rpp1, p
˚
1s “

«

p1 ´ k2q2
4k1

,
1 ´ k2

2

�

or rpp1, p
˚
1s “

„

1

2

´ 1

2

b

2k2 ´ k22,
1 ´ k2

2

⇢

,

depending on the capacity levels.
Let us now derive the MSS for this intermediate range of capacities. By Theorem 2, we know

that the upper bound of the MSS is the price p1 solving

⇡h
1 pp1q “ p1 rDpp1q ´ k2s “ ⇡1

`

p
˘

,

whereas the lower bound for the largest firm (firm 1) is given by:

p “ max

 

0, D´1pk1 ` k2q(

. (4)

We therefore need to distinguish two cases.
The first iswhere combined production capacity is su�ciently large to serve thewholemarket

at the competitive price: k1 ` k2 • 1. In this case, p “ 0 and p1 is the price that solves

⇡h
1 pp1q “ p1 rDpp1q ´ k2s “ ⇡1

`

p
˘ “ 0,

which implies

Dpp1q “ k2, and therefore p1 “ D´1pk2q “ 1 ´ k2.

In this case, p “ 0 is also the MSS lower bound for firm 2. Thus, when 1 ° k1 • 1 ´ k2, the MSS
is symmetric and given by:

M “ “

0, D´1pk2q‰ ˆ “

0, D´1pk2q‰ “ r0, 1 ´ k2s ˆ r0, 1 ´ k2s .
17Note that in this duopoly example pp1 exceeds pp2, so that pp1 is the lower bound of the mixed-strategy support. For

a detailed analysis, see Deneckere and Kovenock (1992).
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Observe that an increase in k2 lowers the upper bound of the MSS since it reduces the residual
demand for firm 1’s products when it is the high-priced seller. This, in turn, makes that the
‘optimal high price’ is lower leaving fewer prices that qualify as a better-response.

Now consider the other possibility where k1 ` k2 † 1 so that p “ 1´ k1 ´ k2 ° 0. In this case,
the upper bound of the MSS is obtained by solving

p ¨ p1 ´ p ´ k2q “ p1 ¨ p1 ´ p1 ´ k2q,

which is equivalent to

k1 ¨ p1 ´ k1 ´ k2q “ p1 ¨ p1 ´ p1 ´ k2q,

and therefore p1 “ k1. In contrast, the lower bound of the MSS di�ers across firms. For firm 1
this lower bound is the same as in the previous case. For firm 2, however, it is the price rp2 given
by:

⇡h
2 pp1q “ p1 rD pp1q ´ k1s “ rp2 ¨ k2

with rp2 ‰ p1. This price solves k1 p1 ´ 2k1q “ rp2k2, which gives rp2 “ k1 p1 ´ 2k1q {k2 † p. Thus,
when 1 ´ k2 ° k1 ° p1 ´ k2q{2, the MSS is asymmetric and given by:

M “ “

p, p1
‰ ˆ rrp2, p1s “ r1 ´ k1 ´ k2, k1s ˆ rk1 p1 ´ 2k1q {k2, k1s .

Notice that k1 has a positive impact on the size of the MSS since it reduces the lower bounds
while increasing the upper bounds (Proposition 3).18 Also, and in contrast to the previous case,
k2 has a positive impact on the size of the MSS by reducing the lower bounds.

To conclude, let us now compare the range of the mixed-strategy support rpp1, p
˚
1s with the

price range of the MSS for all (relevant) capacity levels. Figures 5 and 6 provide a graphical
illustration.

In Figure 5, the MSS is depicted by the solid (thick) black line for every level of k1 and k2

(expressed as a function of k1, which in this figure is k2pk1q “ 9
10 ¨ k1). Starting from the left, for

su�ciently small capacities there is a pure-strategyNash equilibrium that coincideswith theMSS
(Theorem 1). For this specific example, this is true as long as k1 § k1 « 0.345.19 At that point,
the market-clearing price p (indicated by the thin solid line) starts to fall below the maximizer
of ⇡h

1 (indicated by the straight dashed line). This provides an incentive for firms to hike their
price and become the high-priced firm.

The increase in capacities not only undermines the existence of a pure-strategyNash solution;
it also widens the range of better-responses. To see this, recall that p1 is the lowest price above p

18Note that p̃2 is decreasing in k1 for k1 ° 1{4, which holds true in this case.
19This threshold value can be computed by using k1 “ k1 “ p1´k2q

2 and k2 “ 9
10k1. Combining gives k1 « 0.345

and k2 « 0.31.
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k1

pi

k1 0.53 1.11k˚
1

pp1

p˚
1

p̃2

p1

Figure 5: Myopic Stable Set in a linear demand duopoly with k2 “ 9
10k1.

for which firm 1 obtains the same profit. Therefore, and due to the fact that the profit function is
strictly concave and has a unique maximum (see Figure 1 and Figure 2), the MSS upper bound
(p1) is increasing and the MSS lower bound (rp2) is decreasing in the gap between p˚

1 and p. This
range of better-response prices is rising until k1 « 0.53, the capacity level at which p becomes
zero.20 Beyond that point, p remains zero. Since profits at p are zero, profits at p1 must be zero
too. Note that residual demand for the high-priced seller gradually decreases when capacities
grow further. This implies that the residual demand choke price is declining and therefore p1

declines as well. The range of better-response prices is narrowing until k1 • 10
9 and k2 • 1.

At that point, the MSS coincides with the pure-strategy Nash equilibrium in which both firms
charge a price of zero.

The MSS can be compared to the mixed-strategy support rpp1, p
˚
1s. A non-degenerate Nash

equilibrium in mixed strategies exists when capacities are within the intermediate range 0.345 «
k1 § k1 † 10

9 . In Figure 5, the mixed-strategy support is the vertical distance between the dashed
lines. The upper bound of the support is given by the maximizer of the residual profit function
⇡h
1 , which is linearly decreasing in k1. Notice that for this range of capacities, the upper bound

of the MSS, p1, is higher than p˚
1 , because there are prices in excess of this maximizer that still

constitute a better-response. Note further that themixed-strategy support depends quadratically
20This maximumMSS price interval is reached at k1 “ 1 ´ k2. Using k2 “ 9

10k1, this gives k1 « 0.53.
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Figure 6: Myopic Stable Set in a linear demand duopoly with k2 “ 1
4 .

on k1 and reaches its maximum at k˚
1 « 0.618. Finally, observe that the lower bound of themixed-

strategy support, pp1, exceeds both p and rp2. Figure 5 thus visualizes how theMSS strictly includes
the support of the mixed-strategy Nash equilibrium (Theorem 3).

Figure 6 gives another illustration of the same linear demand duopoly example, but this time
the capacity level of the smallest firm is kept fixed at k2 “ 1

4 . Starting at k1 “ 0.25, this means
that the di�erence in firm size is growing when k1 increases. The threshold value at which the
existence of a pure-strategy equilibrium breaks down is at k1 “ p1´k2q

2 “ 0.375. At that point, the
range of better-responses widens until k1 “ 0.75 for the same reasons as before. Yet, and unlike
the scenario in Figure 5, p1 is not declining and remains constant for larger values of k1. This is
because k2 is constant, which means that the residual demand for firm 1 when it is the higher
priced seller is constant too. This, in turn, implies that themaximizer is independent of k1 as well
as the iso-profit price p1.

Similar to the case depicted in Figure 5, Figure 6 also visualizes how the mixed-strategy sup-
port (given by the vertical distance between the dashed lines) is strictly included in the MSS as
indicated by the solid (thick) black line (Theorem 3). Furthermore, Figure 6 illustrates the pos-
itive relationship between the size of the MSS and the size of the biggest market player when
capacities are in an intermediate range (Proposition 3).
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� Concluding Remarks

Within the growing body ofwork on behavioral industrial organization, there is an increasing
focus on behavioral aspects of the firm. In this paper, we have relaxed the common assumption
that firms are pure profit-maximizers and supposed that sellers seek myopic improvements in-
stead. Under this assumption, we addressed a classic and persistent question in economics: How
are prices determined in industries with a few powerful firms? To analyze this oligopoly pricing
problem, we employed the Myopic Stable Set stability concept within the context of a capacity-
constrained pricing game and established the existence of a unique MSS for any given level of
capacities. This result was then compared with the standard Nash solution.

Amain takeaway from our analysis is that the less demanding behavioral assumption of firms
choosing myopic better-responses does not qualitatively a�ect existing Nash price predictions.
If the set of pure-strategy Nash equilibria is nonempty, like when capacities are su�ciently large
or small, it coincides with the MSS. With moderate-sized capacities, the Nash equilibrium is in
mixed strategies. For these cases, all prices in themixed-strategy support are part of theMSS. This
set solution therefore o�ers an alternative foundation for oligopoly pricing. Moreover, we have
shown that the MSS provides a rationale for di�erent types of pricing dynamics. In particular, it
gives an explanation for the emergence of Edgeworth-like price cycles as well as states of hyper-
competition in which supply falls short of market demand.

We see several avenues for future research. One is to use the notion ofMSSwithin the context
of other oligopoly models. For example, Demuynck, Herings, Saulle and Seel (2019b) have re-
cently characterized theMSS for a homogeneous-good Bertrand duopoly with asymmetric costs.
A potentially interesting variation on this paper’s capacity-constrained pricing model would be
to assume that production precedes sales. Another avenue is to analyze oligopoly pricing un-
der di�erent behavioral assumptions such as heterogeneity in rationality or competition among
quasi-myopic agents.21 Finally, and especially because theMSS is rich enough to permit heteroge-
neous pricing, we can imagine it to serve as a foundation for further empirical and experimental
work.

21See Dixon (2020) for a recent study of strategic firm behavior under the assumption of almost-maximization, i.e.,
competition among almost-rational sellers who choose almost best-responses.
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Appendix: Proofs

Proof of Lemma 1. Suppose that Dp0q ° K so that p ° 0. Since Dppq “ K and demand is
decreasing in price, it holds that Dppiq • K when pi § p. This means that Dppiq • ki and
Dppiq ´ K´i • ki. It also implies that ki

∞

jP⌦ppiq kj

´

Dppiq ´ ∞

jP�ppiq kj
¯

• ki, because Dppiq •
K • ∞

jP⌦ppiq kj ` ∞

jP�ppiq kj . Hence, if 0 † pi § p, then firm i P N always produces at capacity
and therefore ⇡i “ piki. ⌅

Proof of Proposition 1. If K´1 • Dp0q, then p “ 0. To begin, suppose all firms set the same
price. If all price at some p1 ° p “ 0, then none of them is capacity-constrained sinceK ° K´1 •
Dp0q ° Dpp1q. Hence, each seller has an incentive to (marginally) undercut his rivals. If all price
at p “ 0, then firm 1 has no incentive to deviate since K´1 • Dp0q. It would therefore face no
residual demand at a price above zero. As the largest firm has no incentive to deviate, none of
the firms has an incentive to deviate. We conclude that, whenK´1 • Dp0q, there is a symmetric
pure-strategy Nash equilibrium with all firms pricing at p “ 0.

In addition, there are many asymmetric pure-strategy Nash equilibria, which have in com-
mon that there is a subset of sellers who price at zero. To see this, suppose that, by contrast,
all set a price strictly above zero. Suppose further there is one firm charging the strictly highest
price. In that case, this firm faces no demand sinceK´1 • Dp0q. Hence, it would be better o� by
charging a lower price, e.g., match the price of the lowest-priced firm(s).

Suppose then that there are two or more sellers who set the strictly highest price. If they
face no residual demand, there is again an incentive to deviate, e.g., they would be better o� by
matching the lowest price in the industry. Yet, if they do face residual demand, then they are not
capacity-constrained. To see this, suppose the highest-priced sellers set a price p1 ° 0. They are
then not capacity-constrained when:

ki
∞

jP⌦pp1q kj

¨

˝Dpp1q ´
ÿ

jP�pp1q
kj

˛

‚† ki ñ Dpp1q †
ÿ

jP⌦pp1q
kj `

ÿ

jP�pp1q
kj “ K,

which holds sinceK ° Dp0q ° Dpp1q.
Next, note that in this case undercutting p1 slightly is beneficial when:

pp1
i ´ ✏q ¨ mintki, Dpp1

i ´ ✏q ´
ÿ

jP�pp1
i´✏q

kju ° p1
i ¨ ki

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚,

with ✏ ° 0 and su�ciently small. If the undercutting seller is capacity-constrained, then cutting
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its price to p1
i ´ ✏ is beneficial when:

pp1
i ´ ✏qki ° p1

i
ki

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚ñ

p1
i ´ ✏ ° p1

i
1

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚ñ

p1
i ´ p1

i
1

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚° ✏ ñ

p1
i

»

–

1 ´ 1

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚

fi

fl ° ✏.

Note that the LHS is positive when the term inside the square brackets is positive. That is,

1 ° 1

∞

jP⌦pp1
iq kj

¨

˝Dpp1
iq ´

ÿ

jP�pp1
iq
kj

˛

‚ñ K “
ÿ

jP⌦pp1
iq
kj `

ÿ

jP�pp1
iq
kj ° Dpp1

iq,

which holds.
If the undercutting seller is not capacity-constrained, then cutting its price to p1

i´✏ is beneficial
when:

pp1
i ´ ✏qDpp1

i ´ ✏q ° p1
i

«

ki
∞

jP⌦pp1
iq kj

Dpp1
iq
�

ñ

p1
iDpp1

i ´ ✏q ´ ✏Dpp1
i ´ ✏q ° p1

i

«

ki
∞

jP⌦pp1
iq kj

Dpp1
iq
�

ñ

p1
iDpp1

i ´ ✏q ´ p1
i

«

ki
∞

jP⌦pp1
iq kj

Dpp1
iq
�

° ✏Dpp1
i ´ ✏q ñ

p1
i ´ ki

∞

jP⌦pp1
iq kj

Dpp1
iq

Dpp1
i ´ ✏qp

1
i ° ✏ ñ

p1
i

«

1 ´ ki
∞

jP⌦pp1
iq kj

Dpp1
iq

Dpp1
i ´ ✏q

�

° ✏.

The LHS is strictly positive when:

Dpp1
i ´ ✏q ° ki

∞

jP⌦pp1
iq kj

Dpp1
iq,

which holds becauseDpp1
i ´ ✏q ° Dpp1q and ki † ∞

jP⌦pp1
iq kj . Hence, also in this case, each of the

highest-priced sellers would have an incentive to (marginally) lower his price. We conclude that
in equilibrium there is a subset of firms that price at zero.

For such a subset S to emerge in equilibrium it must hold that none of the firms i P S has an
incentive to hike its price. Note that this is true for each subset that is minimal, i.e., each coalition
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S for which it holds that
∞

jPSztiu kj • Dp0q, for all i P S. Moreover, all sellers who are not part
of such a minimal subset can charge any price since all prices give zero profits.

Taken together, therefore, the set of (a)symmetric pure-strategy Nash equilibria whenK´1 •
Dp0q is given by:

NE “
$

&

%

p P P

ˇ

ˇ

ˇ

ˇ

p P
π

iPS
t0u ˆ

π

iPNzS
r0,8q

,

.

-

.

Now suppose that K´1 † Dp0q. We can distinguish two cases: p1q K • D p0q so that p “ 0,
and p2q K † D p0q so that p ° 0.

Case (1): If K • D p0q ° K´1, then p “ 0. We argue that there can be no pure-strategy
Nash equilibrium in this case. To begin, note that there is no symmetric pure-strategy Nash
equilibrium. If all firms would price at 0, then firm 1 would have an incentive to hike its
price since K´1 † D p0q. If all sellers would price at some p1 ° p “ 0, then none of them
is capacity-constrained since K • D p0q ° D pp1q. Consequently, each supplier has an
incentive to (marginally) undercut its rivals. We conclude that there is no symmetric pure-
strategy Nash equilibrium in this case.

Let us now argue that there does not exist an asymmetric pure-strategy Nash equilibrium
either. First, notice that in such an equilibrium no firm can set a price at 0. Since K´1 †
D p0q, this clearly holds for firm 1 as this firm always has a price above zero for which
its (residual) demand is positive. However, given that firm 1 prices above zero, there is
no combination of firms (other than firm 1) with a combined capacity su�cient to meet
market demand at a price of zero. This implies that each firm that prices at zero has an
incentive to hike its price. We conclude that there is no asymmetric pure-strategy Nash
equilibrium in which one or more firms price at zero.

Suppose then that each firm prices above zero. In this case, there are one or more firms
setting the strictly highest price. These sellers either face no demand in which case they
have an incentive to set a lower price or they do face residual demand. By the same logic
as above, however, none of them would be capacity-constrained and each of them has an
incentive to (marginally) lower its price. We conclude that there is no (a)symmetric pure-
strategy Nash equilibrium whenK • D p0q ° K´1.

Case (2): If K´1 † K † D p0q, then p ° 0. We first argue that in this case there cannot be an
asymmetric pure-strategy Nash equilibrium. If there was, then one or more firms would
be charging the strictly highest price, say p1. If 0 † p1 § p, then lower-priced sellers could
profitably raise their price till p1, because in this case it holds that K § D pp1q. Suppose
then that p1 ° p and that there are two or more firms charging the strictly highest price.
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These sellers are not capacity-constrained sinceK ° Dpp1q when p1 ° p. In this case, and as
shown in the first part of this proof, each has an incentive to (marginally) lower its price.

This leaves the possibility of a single highest-priced firm. Following a similar logic as above,
this firm cannot be capacity-constrained or have zero demand in equilibrium. In case it
would be capacity-constrained, lower-priced firms could profitably raise their prices. In
case of zero demand, the highest-priced seller could profitably deviate to a lower price.
The only possibility is therefore that there is a single highest-priced seller with positive
residual demand who is not producing at capacity. Suppose then that this highest-priced
seller is pricing at p1 ° p. This implies that lower-priced suppliers are capacity-constrained
and therefore could raise their prices below, but arbitrarily close to p1. However, in that
case, the highest-priced seller has an incentive to match the price of his rivals, because:

p1 ki
K

D
`

p1˘ ° p1 `

D
`

p1˘ ´ K´i

˘ ñ ki
K

D
`

p1˘ ° D
`

p1˘ ´ K´i ñ

K´i ° D
`

p1˘
„

1 ´ ki
K

⇢

ñ K´i ° D
`

p1˘
„

K´i

K

⇢

ñ K ° D
`

p1˘ ,

which holds. We conclude that if there is a pure-strategy Nash equilibrium in this case,
then it must be symmetric.

Suppose therefore that all firms charge the same price. If all price at p1 † p, then each firm
can profitably deviate to a higher price (Lemma 1). In a similar vein, if all price at p1 ° p,
then K ° D pp1q so that each has an incentive to (marginally) undercut its rivals.

This leaves all firms pricing at p as the candidate equilibrium. Clearly, since all sellers
produce at capacity in this case, none has an incentive to cut price. Moreover, ifK § Dpp˚

1q,
then none of the firms has an incentive to hike its price. To see this, suppose thatK “ Dpp˚

1q
so that p “ p˚

1 . Since its first-order condition for a maximum is satisfied at p “ p˚
1 , firm 1

does not have an incentive to hike its price:

B⇡h
1 ppq{Bp1 “ Dppq ´ K´1 ` pD1ppq “ Dpp˚

1q ´ K´1 ` p˚
1D

1pp˚
1q “ 0.

As for all other firms, i P Nz t1u, note that p˚
1 • p˚

2 • ... • p˚
n by strict concavity of the

residual profit functions. Therefore, it holds that:

B⇡h
i ppq{Bpi “ Dppq ´ K´i ` pD1ppq † 0,

which implies that none of the firms has an incentive to raise price. Finally, note that if
K † Dpp˚

1q, then p ° p˚
1 so that firm 1’s marginal residual profit is negative at p and

therefore also for its smaller capacity rivals. Hence, also in this case none of the firms has
an incentive to hike its price. We conclude that there is a unique symmetric pure-strategy
Nash equilibrium whenK § Dpp˚

1q and it has all firms pricing at p ° 0. ⌅
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Proof of Proposition 2. The proof is by construction. Following the definition of NE as provided
in Section 4.1, we distinguish two cases and consider each case in turn.

Case (1): Suppose thatK´1 • Dp0q. To show that f8ppqXNE ‰ H for each p R NE, we proceed
in four steps.

Step 1: Following the proof of Proposition 1, if K´1 • Dp0q, then there are two types of
non-Nash price profiles: (i) a price profile with some firms pricing at zero, or (ii) a price
profile with all firms pricing above zero. In case of (ii), move to Step 2. In case of (i), let S
be the set of sellers who price at zero and let p P P zNE be the corresponding price profile.
Since the price profile p is not a Nash equilibrium, the largest member of S can profitably
raise its price. Note that the resulting price profile is also not a Nash equilibrium so that
we can repeat the argument. We conclude that there exists a sequence, which results in all
firms charging a strictly positive price.

Step 2: Following Step 1, there exists a profitable price path from a non-Nash price profile
with some firms pricing at zero to a non-Nash price profile with all firms pricing strictly
above zero. Let p1 P P zNE be a non-Nash price profile with all firms charging a strictly
positive price. We can again distinguish two cases: (i) all sellers set the same strictly pos-
itive price, or (ii) there are two or more firms charging a di�erent strictly positive price.
In case of (ii), move to Step 3. In case of (i), note that since K ° Dp0q it is profitable for
each firm to (marginally) undercut the price of its competitors. Hence, there is a profitable
deviation in this case resulting in a price profile consisting of two or more di�erent prices.

Step 3: Let p2 P P zNE be a price profile resulting from Step 1 and Step 2. That is, p2

exclusively consists of prices above zero and contains at least two di�erent prices. We can
again distinguish two cases: (i) there are two or more firms charging the strictly highest
price, or (ii) there is a single seller setting the strictly highest price. In case of (ii), move to
Step 4. In case of (i), and following the proof of Proposition 1, the highest-priced firms are
not capacity-constrained and can profitably undercut their highest-priced rivals.

Step 4: By steps 1,2 and 3, there is a sequence of myopic improvements from any non-
Nash price profile to a non-Nash price profile with (i) strictly positive prices only, and
(ii) a single strictly highest price. Let p be a given non-Nash price profile with these two
characteristics and let the single highest-priced seller be denoted by h. Note that, since
K´1 • Dp0q, the highest-priced seller has no residual demand. Consequently, this firm
can profitably deviate to a price p˝

h lower than the lowest price in p and arbitrarily close
to zero: ||p˝

h ´ 0|| † ✏, for all ✏ ° 0. This would create a situation with a new highest-
priced firm (perhaps via Step 3) and the argument can be repeated. This implies that there
is a sequence of myopic improvements from the price profile p to a price profile with a
su�cient number of sellers pricing arbitrarily close to zero. That is, there is a  ° 0 such
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that the -fold iteration of Step 4 generates a sequence:

p “ p0, p1 P fpp0q, p2 P fpp1q, ..., p P fpp´1q,

where p is arbitrarily close to some p1 P NE: ||p´p1|| † ✏, for all ✏ ° 0. Then, by definition,
p1 P f8ppq so that f8ppq X NE ‰ H.

Case (2): Now suppose that K § Dpp˚
1q so that all firms pricing at p ° 0 is the unique pure-

strategyNash equilibrium (Proposition 1). To begin, note that each seller who prices below
p can profitably raise his price to p (Lemma 1). The remaining type of non-Nash price
profile to consider is therefore one with all prices weakly above and at least one strictly
above p.

If there are two or more firms charging the strictly highest price (above p), then the situa-
tion is comparable to Step 2 and Step 3 of Case (1) above. That is, a highest-priced seller
can profitably deviate to a price (marginally) below the highest price. The resulting price
profile is then one with a single strictly highest price. The maximum profit for this highest-
priced firm (as before, indicated with subscript h) is obtained when it sets its residual
profit-maximizing price, i.e., the price p˚

h solving:

Dpp˚
hq ´

ÿ

jP�pp˚
hq
kj ` p˚

hD
1pp˚

hq “ 0.

Note that the solution to thismaximization problemwould be no di�erentwhen all its com-
petitors price at p. Since all firms pricing at p is a pure-strategy Nash equilibrium, however,
it must hold that ⇡h

hpp˚
hq § ⇡hppq. This implies that a single highest-priced seller canmyopi-

cally improve by charging p and produce at capacity. This argument can be finitely repeated
until all firms price at p. We conclude that if K § Dpp˚

1q, then p P fNppq X NE ‰ H, which
implies f8ppq X NE ‰ H. ⌅

Proof of Theorem 1. The set NE as defined in Section 4.1 is a MSS when it is closed and satisfies
deterrence of external deviations, asymptotic external stability, and minimality.

Closedness: If K § Dpp˚
1q, then the pure-strategy Nash equilibrium is a singleton, which is

closed. IfK´1 • Dp0q, then the set NE is given by:

NE “
$

&

%

p P P

ˇ

ˇ

ˇ

ˇ

p P
π

iPS
t0u ˆ

π

iPNzS
r0,8q

,

.

-

.
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Hence, it is e�ectively the product of a finite number of closed sets, which is closed.

Deterrence of External Deviations: Notice that the set of pure-strategy Nash equilibria is e�ec-
tively the set of undominated strategy profiles: NE “ tp P P |fppq “ pu, which implies that no
firm can profitably deviate to a price profile outside NE.

Asymptotic External Stability: This condition holds by Proposition 2, which establishes that the
capacity-constrained pricing game exhibits the weak improvement property. Hence, from any
price profile not in NE it is possible to get arbitrarily close to a pure-strategy equilibrium by a
finite number of myopic improvements.

Minimality: Since the set NE is closed and the previous two conditions hold, minimality fol-
lows directly from Corollary 3.11 in Demuynck, Herings, Saulle and Seel (2019a); a mirror re-
sult which e�ectively shows that MSS Ö NE when the set of pure-strategy Nash equilibria is
nonempty.

Combining the above, we conclude that the set NE is a MSS. It remains to be shown that it is also
the unique MSS.

Uniqueness: Suppose there would be another MSS,M , di�erent from NE. As NE is a MSS, first
note that neither M Å NE, nor NE Å M , because otherwise the minimality requirement would
be violated for either M or NE. Moreover, note that neither M X NE “ H, nor M X NE ‰ H
withM ‰ NE. If so, then there would be a price profile inNE that is not inM . Yet, for each price
profile inNE it holds that no firm has a profitable deviation to a price profile outsideNE, which
implies that the Asymptotic External Stability condition would be violated for M . We conclude
thatM “ NE and therefore that NE is the unique MSS. ⌅

Proof of Lemma 2. Let us prove each of the three cases in turn.

(i) For each i P N , ifDp0q ° K´i ° Dpp˚
i q ´ki, thenDppq ° Dpp˚

i q because either (1)K † Dp0q
and p ° 0 so that Dppq “ K ° Dpp˚

i q, or (2) K • Dp0q and p “ 0 so that Dppq “ Dp0q °
Dpp˚

i q. Hence, in this case, p˚
i ° p • 0. Since the residual profit functions are strictly

concave and have a unique maximizer at p˚
i , it follows that the iso-profit price is at the

decreasing part of the residual profit function: pi ° p˚
i ° 0, for all i P N .

Let us now show that the iso-profit price is increasing with firm capacity. To that end,
consider two firms i and j with ki ° kj and suppose that p ° 0. Suppose further that they
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both pick a price p from
`

0, D´1pK´iq
˘

. Comparing their residual profits gives:

⇡h
i ppq ´ ⇡h

j ppq “ p pDppq ´ K´iq ´ p pDppq ´ K´jq
(5)

“ p pK´j ´ K´iq “ p pki ´ kjq ° 0.

Moreover, for p ° 0 and following Definition 5 of the iso-profit price, it must hold that:

⇡h
i ppiq ´ ⇡h

j

`

pj
˘ “ p pki ´ kjq ° 0. (6)

To show that pi ° pj ° 0, suppose the opposite, i.e., pj ° pi, in view of a contradiction. As
established above, firms’ residual profits are decreasing at their iso-profit price so that:

⇡h
i

`

pj
˘ † ⇡h

i ppiq for pj ° pi,

and, therefore:

⇡h
i

`

pj
˘ ´ ⇡h

j

`

pj
˘ † ⇡h

i ppiq ´ ⇡h
j

`

pj
˘ “ p pki ´ kjq .

Notice, however, that:

⇡h
i

`

pj
˘ ´ ⇡h

j

`

pj
˘ “ pj

`

Dppjq ´ K´i

˘ ´ pj
`

Dppjq ´ K´j

˘

“ ´pj pK ´ kiq ` pj pK ´ kjq “ pj pki ´ kjq ° p pki ´ kjq ,

which contradicts the previous result that ⇡h
i

`

pj
˘ ´ ⇡h

j

`

pj
˘ † p pki ´ kjq.

Now suppose p “ 0. In this case, and again following Definition 5, it holds that:

⇡h
i ppiq “ pi pDppiq ´ K´iq “ p ¨ ki “ 0,

which implies that the iso-profit price of firm i is given by:

pi “ D´1pK´iq ° 0,

and, therefore:

D´1pK´iq ° D´1pK´jq ° 0,

for every i, j P N with ki ° kj . We conclude that if ki ° kj , then pi ° pj ° 0, for all i, j P N .
Notice that this also shows that firm 1 has the highest iso-profit price.
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(ii) Suppose now that Dpp˚
i q ´ K´i • ki, for all i P Nz t1u. Since in this case Dpp˚

i q • K, it
follows thatDpp˚

i q • K ” Dppq for every i ‰ 1, which implies that p • p˚
i . Since in this case

every firms i (except firm 1) sells at capacity (see Lemma 1), its profit line pki intersects the
residual profit ⇡h

i either at the maximum or at the decreasing part. Consequently, the only
price for which p ¨ ki “ ⇡h

i ppiq is the market-clearing price p at which the residual profit of
firm i reaches its peak and declines afterward at any higher price pi ° p. Finally, recall that
in case of intermediate capacities: Dpp˚

1q † K andDp0q ° K´1. Hence, for firm 1 it always
holds that p1 ° p˚

1 ° p.

(iii) The third situation to consider is when Dp0q § K´m, with n • m ° 1. In this case, it
holds that Dp0q † K and therefore p “ 0. Notice that residual demand for firm m is zero
at all prices, which implies that all firms weakly smaller than firm m also face no residual
demand. We conclude that pi “ p “ 0 for each firm i “ m,m` 1,m` 2, ..., nwith capacity
ki § km.

⌅
Proof of Lemma 3. Let us discuss the three cases in turn.

(i) Suppose that K † Dp0q and that firm 1 is the strictly largest seller. In this case, p ° 0 and
the iso-profit price p1 is the price solving the following equation:

⇡h
1 pp1q “ p1 pDpp1q ´ K´1q “ p ¨ k1.

The hyper-competitive prices are given by:

⇡h
i pp1q “ p1 pDpp1q ´ K´iq “ p̃i ¨ ki.

Hence, it immediately follows that rp1 “ p. As to a firm i P Nz t1u, note that

p “ p1 pDpp1q ´ K´1q
k1

and rpi “ p1 pDpp1q ´ K´iq
ki

.

Comparing and rearranging gives:

p ´ rpi “ p1 pDpp1q ´ K´1q
k1

´ p1 pDpp1q ´ K´iq
ki

“ p1 ¨ pk1 ´ kiq rK ´ Dpp1qs
k1ki

° 0,

which holds because p1 ° p and firm 1 is the strictly largest seller. We conclude that if
K † Dp0q and each firm i P Nzt1u is strictly smaller than firm 1, then 0 † rpi † p and
rp1 “ p.

(ii) Given that Dp0q ° K and following the same steps as under (i) above, it holds that

rpi ´ rpj “ p1
pki ´ kjq rK ´ Dpp1qs

kikj
° 0,

for any two firms i, j P N with ki ° kj .
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(iii) IfDp0q § K´i, thenDp0q § K and therefore p “ 0. Moreover, the residual demand of firm
i P Nz t1u at p1 is Dpp1q ´ K´i § 0, which implies ⇡h

i pp1q “ 0 and therefore rpi “ p “ 0.

⌅

Proof of Lemma 4.

(i): Suppose pi “ p1. We show that for all pi P Pi such that p † pi † p1 it holds that ⇡ippi, p´iq “
piki. The proof relies on the following claim:

Claim 1: For all i ‰ 1 such that pi P pp, p1q then firm i is capacity-constrained.

Proof. Since p1 “ p1 then either, (i) p “ 0, which implies Dpp1q ´ ∞

jP�pp1q kj “ 0, or (ii)
p ° 0, which implies Dpp1q ´ ∞

jP�pp1q kj ° 0. Taken together, this means:

Dpp1q ´
ÿ

jP�pp1q
kj • 0,

The above can be rewritten as

Dpp1q ´
ÿ

jP�pp1qztiu
kj • ki, for each i P Nzt1u.

Consider some firm i P Nzt1u that prices at pi P pp, p1q. Its demand is then generally given
by:

Dippi, p´iq “ max

$

&

%

ki
∞

jP⌦ppiq kj

¨

˝Dppiq ´
ÿ

jP�ppiq
kj

˛

‚, 0

,

.

-

.

Note that since

Dpp1q ´
ÿ

jP�pp1q
kj • 0,

it holds that

Dppiq ´
ÿ

jP�ppiq
kj ° 0,

since Dppiq ° Dpp1q and ∞

jP�ppiq kj † ∞

jP�pp1q kj for pi † p1. Hence, each firm i P Nzt1u
faces strictly positive demand when pricing below p1. Note further that this also implies
that this firm is capacity-constrained when no other firm prices at pi, because

Dppiq ´
ÿ

jP�ppiq
kj ° Dpp1q ´

ÿ

jP�pp1qztiu
kj • ki.
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because Dppiq ° Dpp1q and∞

jP�ppiq kj § ∞

jP�pp1qztiu kj for pi † p1.

Finally, suppose that there is at least one other firm pricing at pi P pp, p1q. In this case, firm
i is also capacity-constrained, because

ki
∞

jP⌦ppiq kj

¨

˝Dppiq ´
ÿ

jP�ppiq
kj

˛

‚° ki ñ

Dppiq ´
ÿ

jP�ppiq
kj °

ÿ

jP⌦ppiqztiu
kj ` ki ñ

Dppiq ´
ÿ

jP�ppiq
kj ´

ÿ

jP⌦ppiqztiu
kj ° ki.

This inequality holds, becauseDppiq ° Dpp1q and∞

jP�ppiq kj`∞

jP⌦ppiqztiu kj § ∞

jP�pp1q kj .

Since Claim 1 holds, we conclude that if pi is such that p § pi † p1, then ⇡ippi, p´iq “ piki

which is increasing in price. Hence, ⇡ippi, p´iq ° ⇡ippq when pi P pp, p1q and p1 “ p1, for
each firm i P Nzt1u.

(ii): By definition, rpi “ mintpi P Pi|⇡ippiq “ ⇡h
i pp1qu. By Lemma 1, we know that if 0 † pi § p,

then ⇡i “ piki. Consequently, since ⇡i is strictly increasing in pi in the range pp̃i, ps it holds
that ⇡ippi, p´iq ° ⇡h

i pp1q for pi P pp̃i, ps ⌅

The following Lemma 5 and Lemma 6 are used in the proof of Theorem 2.

Lemma 5. If p P M and p1 P f8ppq, then p1 P M .

Proof of Lemma 5. Towards a contradiction, suppose that p1 R M when p1 P f8ppq and p P M .
SinceM is closed, there is a � ° 0 such thatB�pp1qXM “ H, whereB� is the open ball with radius
�. Furthermore, by the definition of f8, there is a  P N and a p P fppq such that p P B�pp1q,
which means p R M . Since p P fppq, there is a sequence p0, p1, ..., p of length  such that

p0 “ p, p1 P fpp0q, ..., p P fpp´1q.

Let 1 P t1, ...,u be such that p1 is the first element in this sequence with the property that
p

1 R M . Hence, p1´1 P M and p
1 P fpp1´1q, which violates deterrence of external deviations

ofM . Consequently, p1 P M . ⌅

Lemma 6. Let ⇡s
i ppiq denote the profit of firm i P N when at least one other firm j ‰ i is charging the

same price pi. Then, it holds that ⇡s
i ppiq ° ⇡h

i ppiq and ⇡`
i ppiq ° ⇡h

i ppiq for any pi P `

p,↵
˘

.
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Proof of Lemma 6. Let us start by showing that:

⇡s
i ppiq ° ⇡h

i ppiq .
We can distinguish two cases: (1) the firms charging the same price are capacity-constrained,
or (2) the firms charging the same price are not capacity-constrained. Note that in either case
the single highest-priced firm is not capacity-constrained, because with pi P `

p,↵
˘

it holds that
K ° D ppiq. As to (1), we have that

⇡s
i ppiq ° ⇡h

i ppiq ñ piki ° pi

»

–Dppiq ´
ÿ

jP�ppiq
kj

fi

fl ñ K ° D ppiq ,

which holds. As to (2), we have that

⇡s
i ppiq ° ⇡h

i ppiq ñ pi
ki

∞

jP⌦ppiq kj

»

–Dppiq ´
ÿ

jP�ppiq
kj

fi

fl ° pi

»

–Dppiq ´
ÿ

jP�1ppiq
kj

fi

fl ,

with �

1ppiq ‰ �ppiq. This is equivalent to

ki
∞

jP⌦ppiq kj

»

–Dppiq ´
ÿ

jP�ppiq
kj ´

ÿ

jP⌦ppiq
kj `

ÿ

jP⌦ppiq
kj

fi

fl ° Dppiq ´
ÿ

jP�1ppiq
kj ,

or

ki
∞

jP⌦ppiq kj

»

–Dppiq ´ K `
ÿ

jP⌦ppiq
kj

fi

fl ° Dppiq ´
ÿ

jP�1ppiq
kj .

Rearranging gives

ki

«

Dppiq ´ K
∞

jP⌦ppiq kj

�

° Dppiq ´
ÿ

jP�1ppiq
kj ´ ki ñ ki

«

Dppiq ´ K
∞

jP⌦ppiq kj

�

° Dppiq ´ K.

Since Dppiq † K, the above simplifies to
ki

∞

jP⌦ppiq kj
† 1,

which holds. We conclude that ⇡s
i ppiq ° ⇡h

i ppiq when pi P `

p,↵
˘

.

Let us now show that:

⇡`
i ppiq ° ⇡h

i ppiq .
Wecan again distinguish two cases: (1) the firm charging the lowest price is capacity-constrained,
or (2) the firm charging the lowest price is not capacity-constrained. As to (1), the story is the
same as above. As to (2), we have that

⇡`
i ppiq ° ⇡h

i ppiq ñ piD ppiq ° pi

»

–Dppiq ´
ÿ

jP�ppiq
kj

fi

fl ,
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which holds because
∞

jP�ppiq kj ° 0. We conclude that ⇡`
i ppiq ° ⇡h

i ppiq when pi P `

p,↵
˘

. ⌅

Proof of Theorem 2. First note that the set M is closed by definition. In the following, we show
that the setM also satisfiesDeterrence of External Deviations,Asymptotic External Stability andMin-
imality. Finally, we prove that M is unique.

Deterrence of External Deviations: Let p P M be some price profile inM . We show that there is
no profitable deviation to a price profile in P zM . Take any firm i P N and suppose that it is the
highest priced firm in the market. We have that eitherDp0q ° K´i orDp0q § K´i. In the former
case, firm i has positive residual demand. Then, by strict concavity of ⇡h

i , its profit is lowest in
M at p1. By Lemma 1 and Lemma 6, since ⇡`

i ppiq • ⇡h
i ppiq and ⇡sppiq • ⇡h

i ppiq for all pi P rrpi, p1s
there is no other price in the setM giving a lower profit. By definition of rpi, such a profit ⇡h

i pp1q
is equivalent to the situation in which firm i charges rpi. We therefore conclude that, whenever
Dp0q ° K´i, the lowest profit for any firm i is obtained either at rpi or at p1 given that it is the
highest priced firm in the market. Note that if a firm i unilaterally deviates to a p1 P P zM , it must
be either that (a) p1

i † rpi, or (b) p1
i ° p1. Consider first case (a). Then, by Lemma 1, this firm

will obtain ⇡ipp1
iq ” p1

i ¨ ki † ⇡iprpiq ” rpi ¨ ki and therefore decreasing price below rpi is not an
improvement. Take now case (b). If firm i deviates with a p1

i ° p1, it holds that ⇡h
i pp1

iq † ⇡h
i pp1q

and therefore for any price p1
i ° p1 such deviation is unprofitable.

Finally, consider the case Dp0q § K´i. By Lemma 3, we have that rpi “ 0. Then, the only
possible deviation to P zM for firm i is to some p1

i ° p1. However, profits are zero at all prices in
excess of p1 so that no firm has a profitable deviation to such a price.

Asymptotic External Stability: Consider a price profile p P P zM . We show that there exists a
p1 P M such that p1 P fN ppq. To begin, notice that if p P P zM , then there is at least one firm
pricing below its hyper-competitive price rpi or above firm 1’s iso-profit price p1.

LetLprpiq “ ti P N |pi † rpiu be the set of sellers who are pricing below their hyper-competitive
price and letHpp1q “ ti P N |pi ° p1u be the set of sellers who price above firm 1’s iso-profit price.
Moreover, let � • 0 and ⌘ • 0 denote the cardinality of Lprpiq and Hpp1q, respectively.
Step 1: If Lprpiq “ ?, then Hpp1q ‰ ?; In this case, proceed with Step 2. If Lprpiq ‰ ? then, for

each firm i P Lprpiq, pi † rpi § p, so that ⇡ippi, p´iq “ piki by Lemma 1. This implies that
each firm i P Lprpiq can profitably deviate to themarket-clearing price p P M , which induces
a sequence of price profiles:

p “ p0, p1 P f
`

p0
˘

, p2 P f
`

p1
˘

, ..., p� P f
´

p�´1
¯

.

If p� P M , then the Asymptotic External Stability condition is met. If p� R M , then proceed
with Step 2.
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Step 2: Let p�, with � • 0, be the price profile resulting from Step 1. By construction, it holds
that Lprpiq “ ? and Hpp1q ‰ ?. Suppose Dp0q ° K which implies that p ° 0. First, recall
that rpi is the price solving ⇡iprpiq “ ⇡h

i pp1q, for all i P N . This implies ⇡h
i ppiq § ⇡h

i pp1q
when pi • p1, because ⇡h

i ppiq is strictly concave. Next, denote by hpp�q P Hpp1q the firm
charging the highest price at p�. Since p�h ° p1 by construction and following the previous
observations in combination with Lemma 1, firm hpp�q has a profitable deviation to p. This
induces a new price profile p�`1 in which case either all firms price weakly below p1, or
there are still one or more firms pricing above p1. In case of the former, the Asymptotic
External Stability condition is met, whereas in case of the latter we can repeat the argument.
Denote by hpp�`1q the firm charging the highest price at p�`1. This firm has a profitable
deviation to p ° rphpp�`1q. Extending the above logic delivers a sequence:

p�`1 P f
´

p�
¯

, p�`2 P f
´

p�`1
¯

, ..., p�`⌘ P f
´

p�`⌘´1
¯

.

Hence, by construction, p�`⌘ “ p1 P M , and therefore the Asymptotic External Stability
condition is met.

Finally, suppose that Dp0q § K so that p “ 0. Consequently, K´1 † D p0q for otherwise
all firms pricing at zero would constitute a pure-strategy Nash equilibrium. Now consider
some price profile p R M with at least one firm pricing above p1. If p is such that firm 1

prices at zero, then let this firm raise its price to p˚
1 , which is profitable and in the set M ,

because p˚
1 † p1. Note that since K´1 ´ ki † D p0q for any firm i other than firm 1, each

firm pricing at zero can profitably raise its price to p˚
1 . This results in a price profile with

all firms strictly pricing above zero.

Next, consider the highest price in the market. If there are two or more firms charging the
highest price, say pi, then they are not capacity-constrained since D ppiq ´ ∞

jP�ppiq kj †
∞

jP⌦ppiq kj , which is equivalent to K ° D ppiq and this holds, because K • D p0q. If their
profits are positive, then there is a myopic improvement by cutting their price slightly since
this gives a discrete increase in demand. This yields a situation in which one firm charges
the strictly highest price. AsD pp1q´K´1 “ 0 in this case, we have thatD pp1q´K´i § 0 for
each firm i other than 1 and, therefore, D pp1

iq ´ K´i † 0 for any p1
i ° p1 and i P N . Hence,

this single highest-priced firm receives zero profits and, hence, has a profitable deviation
to p˚

1 .

Minimality: Towards a contradiction, suppose that there exists a closed set M 1 ä M satisfying
Deterrence of External Deviations andAsymptotic External Stability. We distinguish two cases: either
the market-clearing price profile p P M 1, or the market-clearing price profile p R M 1.

Case 1: Suppose that p P M 1. Note that at p, if a firm i has a positive residual demand, then
it has a profitable deviation to any pi with p † pi † pi, by concavity of the residual profit
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functions. Note that this always holds for firm 1 (Lemma 2). Recall also that, by Lemma 2
we have that p1 • ... • pn. It follows that, from p, the largest price interval is e�ectively
determined by firm 1. Fix such a firm 1 and let it deviate to any p1 for which p † p1 † p1.
Thus, by the property of deterrence of external deviations of M 1 and the fact that p P M 1, the
following price profiles are contained inM 1:

M 1
1 “ tp P P |p § p1 † p1, pj “ p, @j ‰ 1u Ñ M 1.

Moreover, as firm 1 can charge a price in M 1 arbitrarily close to p1, then, by Lemma 5, the
following price profiles are also contained inM 1:

M 1
1 Ä M 1

2 “ tp P P |p § p1 § p1, pj “ p, @j ‰ 1u Ñ M 1.

Now fix p1 “ p1 in M 1
2. Then, by Lemma 4, each firm i other than firm 1 has a profitable

deviation to any pi for which it holds that p † pi † p1. It then follows from the deterrence of
external deviations ofM 1 that

M 1
2 Ä M 1

3 “ tp P P |p § pi § p1, @i P Nu Ñ M 1.

Next, fix some p P M 1
3 with pi “ p1 for some i ‰ 1 and p1 † p1. In this case, it is implied

by Lemma 4 (ii) that this firm i has a profitable deviation to some price p1
i P `

rpi, p
‰

. Note
that, since the choice of i is arbitrary and the fact that M 1 satisfies the deterrence of external
deviations condition, it follows that

M 1
3 Ä M 1

4 “ tp P P |rpi † pi § p1,@i P Nu Ñ M 1.

Finally, note that since firm i can charge a price inM 1 arbitrarily close to rpi, it must hold by
Lemma 5 that:

M 1
4 Ä M 1

5 “ tp P P |rpi § pi § p1,@i P Nu Ñ M 1,

and thereforeM 1
5 “ M Ñ M 1, a contradiction.

Case 2: Suppose now that the price profile p R M 1. Fix some p P M 1. We show that p P f8ppq.
It then follows from Lemma 5 that p P M 1, a contradiction.

Step 1: Let Lppq “ ti P N |pi † pu be the set of sellers who are pricing below the market
clearing price. EitherLppq is empty or not. In case of the former proceedwith Step 2. In case
of the latter, note that each firm pricing below the market-clearing price has a profitable
deviation to p (Lemma 1). By letting each firm to deviate we induce a new price profile
p1 P f�ppq for some � ° 0, inwhich each firmpricesweakly above themarket-clearing price.
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Notice that, since M 1 satisfies deterrence of external deviations, it must hold that p1 P M 1. If
p1 “ p, then we have a contradiction concluding the proof. Otherwise proceed with Step 2.

Step 2: Let p be the price profile resulting from Step 1. Thus p is such that all firms weakly
price above p with at least one seller pricing strictly above p. In this second step, we show
there exists a path of myopic improvements such that the resulting price profile consists of
two prices. Specifically, this price profile has one or more firms charging the highest price
ph and one or more firms charging the lowest price ph ´ ", with " positive and su�ciently
small.

To begin, consider a lowest priced firm l. If this firm is not capacity-constrained, then all
higher priced sellers face zero residual demand. If pl “ p, then all higher priced sellers can
profitably match pl in turn. This, induces a new price profile p P fµppq for some µ ° 0, By
the µ-fold iteration of deterrence of external deviations we have that p P M 1, a contradiction
concluding the proof. If pl ° p, then each higher priced firm can profitably deviate to a
price pl ´ ✏ • p for some ✏ ° 0. This results in a price profile with two prices: pl and pl ´ ✏.

Next, suppose that there is a single lowest priced seller who is capacity-constrained. In this
case, we can distinguish two scenarios. Either, (i) it raises its price till p1

l for which kl “
D pp1

lq. That is, to the lowest price for which its capacity is non-binding, while remaining
the lowest priced firm in the market, or (ii) it raises its price till it matches the price of the
second lowest priced firm(s). We study the two cases separately.

Case (i): In this case, we are back in the first situation where none of the higher priced
firms faces residual demand. Hence, they can profitably lower their price to p1

l ´ ". Again,
the result is a price profile with two prices: p1

l and p1
l ´ ".

Case (ii): Let firm i be one of the lowest priced firms. Either, (iia) firm i raises its price
until it is no longer capacity-constrained, or (iib) firm imatches the next lowest prices firm.
We consider the two possibilities separately.

(iia): Firm i raises its price till p2
l for which it holds thatD pp2

l q´∞

jP�pp2
l q kj “ ki. This im-

plies that all firms pricing below p2
l can also profitably raise their price till p2

l , whereas
all firms pricing above p2

l face no residual demand. Hence, these higher priced firms
canmyopically improve by lowering their price to p2

l ´✏, which again results in a price
profile with two prices: p2

l and p2
l ´ ✏.

(iib): Firm i raises its price to the price of the next lowest priced firm(s) in which case all
lower priced firms can do the same since they are capacity-constrained. This brings
us back either to the situation described under (iia) above or iterate (iib) until the
highest priced firms still face residual demand, in which case lower priced firms can
raise their price till ph ´ ✏, where ph is the highest price in the market.
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Step 3: Let p P M 1 be the price profile resulting from the previous steps. Note that, by
construction, at p there are two groups of firms: the highest priced firmsHppq charging ph

and the lowest priced firms Lppq charging pl “ ph ´ ✏. According to Step 2 we have two
cases: either (i) the lowest priced firm are not capacity-constrained or (ii) the lowest priced
firm are capacity-constrained. Let us consider the two cases separately.

Case (i): Sincewe are in the case such that the lowest pricedfirms are not capacity-constrained
then the residual demand of the highest priced firm(s) is zero and so its profit. Therefore,
each highest priced firm has a profitable deviation to a price pl ´ ✏ for an arbitrarily ✏ ° 0.
Such a deviation is profitable by the fact that ⇡ipphq “ 0 † ⇡ippi, p´iq for any pi P pp, plq,
which is the case.

By letting each highest priced firm h P Hppq to deviate we induce a new price profile p1 P
f qppq for some q ° 0. Such a price profile is also characterized by two groups of firms:
the highest priced firmsHpp1q charging p1

h and the lowest priced firms Lpp1q charging p1
l. If

the lowest priced firms are capacity-constrained, then move to Case (ii), otherwise case (i)
applies again.

Case (ii): Sincewe are in the case such that the lowest priced firms are capacity-constrained
then the residual demand of the highest priced firm(s) is positive and so its profit.

At ph, an highest priced firm h has a profitable deviation undercutting pl “ ph ´ ✏ for some
✏ ° 0 when

⇡hpph ´ 2✏q ° ⇡hpphq ñ

khpph ´ 2✏q ° kh
∞

jP⌦pphq kj

»

–Dpphq ´
ÿ

jP�pphq
kj

fi

fl pn ñ

khph ´ kh
∞

jP⌦pphq kj

»

–Dpphq ´
ÿ

jP�pphq
kj

fi

fl pn ° 2kh✏ ñ

ph

«

1 ´ Dpphq ´ ∞

jP�pphq kj
∞

jP⌦pphq kj

�

1

2

° ✏ ñ

Let denote by A the LHS of the above inequality, i.e.

A ” ph

«

1 ´ Dpphq ´ ∞

jP�pphq kj
∞

jP⌦pphq kj

�

1

2

.
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Note that A ° 0 when

1 ´ Dpphq ° ∞

jP�pphq kj
∞

jP⌦pphq kj
ñ

ÿ

jP⌦pphq
kj ° Dpphq ´

ÿ

jP�pphq
kj ñ

ÿ

jP⌦pphq
kj `

ÿ

jP�pphq
kj “ K ° Dpphq,

which holds since ph ° p by Step 1.

Since the choice of ✏ in Step 2 and Step 3 was arbitrary, we conveniently fix ✏ P p0,Aq such
that each highest priced firm in Hppq has a profitable deviation to ph ´ 2✏ † ph ´ ✏. Note
we can let each highest priced firm deviates by the same ✏. Indeed, every round a highest
priced firm deviates and then A increases implying that ✏ is well defined.

The transition of each highest priced firm induces a new price profile p1 P f⌫ppq for some
⌫ ° 0, characterized by two groups of firms: the highest priced firms charging p1

h and the
lowest priced firms charging p1

l. Since a lowest priced firm is capacity-constrained, Case
(ii) applies again.

Step 4: The iteration of previous steps constitutes a procedure which generates a sequence

p “ p1 P fpp0q, p2 P fpp1q, ..., p P fpp´1q.

By construction, there exists a  ° 0 such that ||p´p|| † ✏, for all ✏ ° 0. Then, by definition
of f8, it holds that p P f8ppq. By Lemma 5, it follows that p P M 1, a contradiction.

Uniqueness: Finally, we show that M is the unique MSS. By contrast, let us assume that there
is another MSS M 1. First, we show that M X M 1 ‰ ?. Towards a contradiction, suppose that
M X M 1 “ ?. Then, by asymptotic external stability of M 1, for all p P M there is p1 P M 1 such
p1 P f8ppq. Then, by closedness of M the intersection between the open ball around p1 with
radius ✏ and M is empty, i.e. B✏pp1q X M “ ?. By definition of f8, there is  P N and a p2 P P

such that p2 P fppq and p2 P B✏pp1q. By -fold application of deterrence of external deviations, it
holds that p2 P M , but p2 P B✏pp1q, a contradiction. ThusM XM 1 ‰ ?. In what follows we prove
that M Ñ M 1. Equality follows from the minimality of M 1. As before, we have that either the
market-clearing price belong to the setM 1 or not.

(1): p P M 1. Then by Case 1 of the minimality proof,M 1 contains alsoMztpu.
Hence,M Ñ M 1.

(2): p R M 1. This possibility is ruled out by Case 2 of the minimality proof. ⌅
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Proof of Proposition 3. By the definition of the hyper-competitive price and the market-clearing
price, we have the following expressions:

rpi “ p1 pDpp1q ´ K´iq
ki

and p “ p1 pDpp1q ´ K´1q
k1

ùñ p ¨ k1 ` p1K´1 “ p1Dpp1q.

Combining gives:

rpi “ p1Dpp1q ´ p1K´i

ki
“ p ¨ k1 ` p1 pK´1 ´ K´iq

ki
,

which implies

rpipk1, kiq “ 1

ki
¨ pk1 ´ 1

ki
p1 pk1 ´ kiq , (7)

for all firms i P Nz t1u with ki † k1. Total di�erentiation with respect to k1 gives:

drpi
dk1

“ 1

ki
¨
„

dp

dk1
k1 ´ dp1

dk1
pk1 ´ kiq ´ `

p1 ´ p
˘

⇢

, (8)

which is negative because dp{dk1 † 0 and dp1{dk1 ° 0. That is, since total capacity is increasing
with a rise in k1, themarket-clearing price is decreasing. Moreover, given that themarket-clearing
price p is decreasing, the iso-profit price of firm 1 is increasing because in this case:

p1 “ min

!

p1 P P1|⇡h
1 pp1q “ p ¨ k1 with p1 ‰ p

)

.

It therefore holds that:

drpi
dk1

“ 1

ki
¨ r dp

dk1
k1

loomoon

p´q

´dp1
dk1

pk1 ´ kiq
loooooooomoooooooon

p´q

´ `

p1 ´ p
˘

looooomooooon

p´q

s † 0. (9)

Thus, an increase in k1 reduces the hyper-competitive prices of all firms other than i. It also leads
to a reduction of the hyper-competitive price of the largest firms, i.e., the market-clearing price
p reduces too. In turn, this implies an increase of p1 and therefore an expansion of the MSS, all
else unchanged. ⌅

Proof of Theorem 3. To prove thatK Ä M when the set of pure-strategyNash equilibria is empty,
we show that: (i) p1 ° p˚

i , and (ii) ppi ° p̃i, for all i P N .

Case (i): To begin, let us establish that p1 ° p˚
i . We can distinguish two cases: (1) p ° 0, and

(2) p “ 0.

(1) Suppose that p ° 0. If all price at p, then all produce at capacity. Hence, there is no
incentive to cut price. Since the set of pure-strategy Nash equilibria is empty, it then must
hold that at least one firm is willing to hike its price. It can be easily verified that when
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the largest firm does not want to raise its price, none of the firms has an incentive to raise
price. Hence, firm 1 has an incentive to hike its price, which implies p † p˚

1 . Moreover,
by strict concavity of ⇡h

1 , firm 1’s residual profit function is increasing up to the (unique)
profit-maximizing price and decreasing at prices in excess of p˚

1 until its contingent demand
is zero. Since firm 1’s profits are positive at p ° 0, this implies that p1 is on the decreasing
part of the residual profit function and therefore that p1 ° p˚

1 . Finally, by strict concavity of
⇡h
i , it holds that p˚

1 • p˚
i , for all i P Nz t1u, so that p1 ° p˚

i .

(2) Now suppose that p “ 0. Since the set of pure-strategy Nash equilibria is empty it
holds that K´1 † Dp0q. Hence, firm 1 faces a strictly concave residual profit function
with a unique maximizer p˚

1 . Because it receives zero profits at p “ 0, it follows that p1 “
D´1pK´1q ° p˚

1 . Moreover, following the same logic as under (1) above, p˚
1 • p˚

i and
therefore p1 ° p˚

i , for all i P Nz t1u.

Case (ii): Let us now turn to the lower bound and show that ppi ° p̃i, for all i P N . We again
distinguish two cases: (1) p ° 0, and (2) p “ 0.

(1) Suppose that p ° 0. Since each firm can sell its entire capacity at p, all prices be-
low p are strictly dominated. As p̃i † p for all firms strictly smaller than firm 1, none of
these firms puts mass on its hyper-competitive price (or any lower price). Regarding the
largest firm(s), recall that they have an incentive to raise their price above p in this case,
which means ⇡h

i pp˚
i q ° ⇡h

i ppq. Consequently, none of the largest sellers puts mass on prices
weakly below p, which is their hyper-competitive price.

(2)Nowsuppose that p “ 0. SinceK´1 † Dp0q, firm 1 can guarantee itself a strictly positive
profit independent of the prices set by its competitors. Hence, firm 1 puts zero mass on
p “ 0 in equilibrium. Yet, given that firm 1 prices strictly above 0, the same logic applies to
firm 2. That is, this firm can guarantee itself a strictly positive profit by pricing below but
arbitrarily close to the lower bound of firm 1’s mixed-strategy support. Consequently, firm
2 also puts zero mass on p “ 0 in equilibrium. This iterative domination argument can be
repeated till firm n. We conclude that when p “ 0, none of the firms puts mass on 0 in a
mixed-strategy Nash equilibrium.

Taken together, ppi ° p̃i, for all i P N , and therefore K Ä M . ⌅
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