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Abstract Estimates of the real death toll of the COVID-19 pandemic have proven to be problematic in 

many countries, and Italy is no exception. Mortality estimates at the local level are even more uncertain 

as they require strict conditions, such as granularity and accuracy of the data at hand, which are rarely 

met. The ‘official’ approach adopted by public institutions to estimate the ‘excess of mortality’ during 

the pandemic is based on a comparison between observed all-cause mortality data for 2020 with an 

average of mortality figures in the past years for the same period. In this paper, we show that more 

sophisticated approaches such as counterfactual and machine learning techniques outperform the official 

method by improving prediction accuracy by up to 18%, thus providing a more realistic picture of local 

excess mortality. The predictive gain is larger for small- and medium-sized municipalities. After 

showing the superiority of data-driven statistical methods, we apply the best-performing algorithms to 

generate a municipality-level dataset of local excess mortality estimates during the COVID-19 

pandemic. This dataset is publicly shared and will be periodically updated as new data become available. 
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1. Introduction 

The COVID-19 pandemic is a complex and constantly evolving phenomenon that is affecting 

the entire world heterogeneously. The disease caused by the spread of this new form of 

coronavirus rapidly propagated worldwide, affecting countries with different timing and 

intensity (Ceylan, 2020). At the time of this writing (2nd July 2020), the countries affected by 

the COVID-19 are 216, the confirmed cases 10,458,422, and the total deaths 511,082 (World 

Health Organization). Italy was the first country in Europe to be hit by COVID-19 and, to date, 

it ranks among the countries with the highest number of deaths. In most countries, including 

Italy, the growing availability of real-time data is driving the decision-making process to face 

the health, economic, and social emergencies. Monitoring the evolution of the pandemic 

allows policymakers to make decisions promptly and manage the economic recovery with 

differentiated place-based policies. In light of this, reliable data about infections and deaths 

are focal to identify correct policies aimed at loosening lockdown measures. Unfortunately, 

the issue of underreporting seems to be widespread with official data on coronavirus 

(Ghislandi et al., 2020). We refer, for example, to the asymptomatic or to the ill people who 

died at home without being tested for the presence of the virus. Besides, such measurement 

error is likely to be heterogeneous even within countries, and this inaccuracy may lead to 

wrong decisions (Leon et al., 2020). A valid alternative for estimating the number of deaths 

caused by the pandemic (directly or indirectly) consists in considering the number of daily 

certified all-cause deaths (deaths from any cause, not only related to coronavirus).1 In 

particular, using historical data on the number of daily certified deaths to estimate the number 

of daily deaths in the absence of pandemic, could vastly reduce the uncertainty associated 

with official data, especially at a disaggregated geographical level. 

This paper aims at estimating the excess of mortality in Italian municipalities (local 

administrative units, LAU) from 21st February (official date of the first coronavirus cluster in 

Italy),2 to provide an accurate and geographically detailed measure on the impact of the 

pandemic. Given the diverse geographical spread of the pandemic, local estimates provide an 

important tool to mitigate or reinforce security measures where necessary. Conversely, official 

data on coronavirus reported cases are released only at the provincial level (the number of 

infected people) or at the regional level (the number of coronavirus deaths). In our research, 

we compare the official number of all-cause deaths for the period 21st February – 15th May 

2020 with an estimate of the number of deaths in the same period in an ordinary situation, i.e., 

in the counterfactual situation without the pandemic. We then consider the difference between 

observed mortality in 2020 and our counterfactual predictions as the number of excess deaths, 

which are very likely to be due, either directly or indirectly, to COVID-19. As the pandemic 

has affected the entire country, it is not feasible to use the most common counterfactual 

 
1 The Italian National Institute of Statistics (Istat) released the number of daily certified deaths for the period 1st 

January – 15th May 2020 for 7,270 Italian municipalities, covering 93.5% of the total Italian population. 

2 However, there is some empirical evidence which suggests that COVID-19 was already present in Northern 
Italy at the end of January (see Cerqua and Di Stefano, 2020). 
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approach based on the comparison of treated and non-treated municipalities. For this reason, 

we make use of the data from the recent past (from 2015 to 2019) on all Italian municipalities 

to build the counterfactual scenario. This is possible because the outcome and predictive 

variables are not very volatile over time. 

We report the estimates obtained using three estimation approaches: intuitive, counterfactual, 

and machine learning (ML). The intuitive approach, which is the one adopted by several 

public institutions, consists in comparing the actual trend of cumulative deaths in 2020 with 

the number observed in the past for the same municipality (in the previous year or for the 

average of previous years). We then use a recent counterfactual methodology, the trajectory 

balancing estimator (see Hazlett and Xu, 2018). It builds for each municipality a ‘synthetic’ 

one, as a linear combination of the mortality trends observed in the previous years for the 

same municipality and municipalities with similar characteristics, before 21st February. 

Finally, we employ three ML algorithms to estimate excess mortality for all municipalities. 

ML techniques allow predicting mortality trends by ‘training data’, i.e., by learning from past 

experience, and evaluating ‘future’ model performance on ‘testing data’ and comparing 

predicted and actual values. Specifically, we employ the Least Absolute Shrinkage and 

Selection Operator (LASSO), random forest, and stochastic gradient boosting. Although, as 

will be explained in Section 3.3, these methods differ in terms of complexity and inner 

workings, the underlying principle is common to all of them: ‘learn’ from (a part of) the data 

to produce a generalizable model able to accurately predict an outcome variable of interest 

(mortality in our case) in out-of-sample predictive tasks on unseen data. This makes them 

data-driven methods precisely targeted to ensure the best possible predictive performance 

given the data at hand.  

We show how all these methods outperform, on average, the intuitive approach adopted by 

Italian institutions, with predictive gains up to 18% and especially sizable increases in smaller 

municipalities. Thanks to the superiority of data-driven methods, we improve the estimates 

of local mortality and provide a more reliable ‘counterfactual’ scenario. Credible 

counterfactuals are an indispensable tool to evaluate causes, effects, and policy responses 

rigorously. This evaluation is critical to improve our understanding of such an unprecedented 

phenomenon (at least in recent times) and becomes impellent as the gradual attenuation of 

the emergency finally allows us to look back. 

It is important to notice that we estimate the gross excess of mortality due to COVID-19, i.e., 

the number of deaths due directly to COVID-19 infections as well as the deaths due to the 

collateral effects of lockdown. Such collateral effects have lowered the likelihood of dying 

from some causes such as road and workplace accidents, pollution-related diseases, or 

criminal activities, and increased the likelihood of dying for the excessive stress of the public 

health system (e.g., severe delays in the hospitalization process). 

The rest of the paper proceeds as follows: Section 2 reviews the literature; Section 3 presents 

data and methods, while Section 4 reports the estimates. Section 5 discusses and concludes. 
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2. Literature review  

Past and recent studies have dealt with the effects of the pandemics3 on mortality trends by 

estimating the excess of mortality across several different countries. In particular, various 

research analyzed the excess of deaths due to the influenza pandemic occurred in the period 

1918-1920, known as the Spanish flu. Despite the differences between the Spanish flu and the 

COVID-19 pandemics (living conditions of the populations, medical knowledge and 

technology), the existence of better data and more sophisticated methodologies nowadays, 

and the different stage of the two pandemics (one is in history books while the other is still in 

progress), it appears appropriate to focus the attention on how these studies were carried out.   

The effects of the 1918-1920 pandemic on the mortality evolution have been studied both at a 

global as well as a country level. The majority of these studies applied intuitive methodologies 

to estimate the mortality excess. Murray et al. (2006), in order to assess the Spanish flu’s 

potential effect on the global population of 2004, estimate the death toll due to the pandemic 

as difference between the annual death rates of the years 1918-1920 and the average annual 

death rates for the periods 1915-1917 and 1921-1923. The same methodology was recently used 

by Barro et al. (2020), who investigate the effects that the Spanish flu had on mortality and the 

economy in 48 countries and draw comparisons with the effects that the current COVID-19 

pandemic may have. In 2009, Ansart et al. realized a study focused on the impact of the 

Spanish flu on 14 European countries’ experience by using a regression model technique. The 

excess of mortality was calculated by computing the difference between the observed 

mortality and the expected baseline mortality for the years 1918-1922. This baseline was 

obtained through a periodic regression model for the period 1906-1922.  

Concerning the effects of the Spanish flu on mortality observed in Italy, different studies have 

been carried out by applying intuitive methodologies. Mortara (1925) compared the monthly 

deaths verified during 1918-1919 with the average number of monthly deaths of the years 

1911-1913 (Mortara, 1925). In the same way, by comparing deaths from influenza-related 

causes (such as pneumonia and bronchitis) for the same period, he estimated the role covered 

in the mortality excess by the diseases connected with the Spanish flu. In a study conducted 

on the mortality trends of the young Italian population during particular periods of crisis, 

Pinnelli and Mancini (1998) estimated the death excess due to the Spanish flu, by comparing 

mortality rates by age and causes of death (influenza, pneumonia and bronchitis ) in the period 

1918-1919 with the mortality rates in 1915-1917 and 1920-1922. To calculate deaths in the 

absence of a pandemic, they calculated moving averages, excluding the reference year and the 

two adjacent years. They estimated the excess deaths by applying the inverse mortality rate 

formula, finding that the mortality evolution for the groups of young people would have been 

different without the pandemics.  

Furthermore, excess mortality has also been estimated to analyze the effect on mortality of 

 
3 The following influenza pandemics occurred in the XX and XXI centuries: the Spanish flu in 1918-1920, the 
Asian flu in 1957-1958, the Hong Kong flu in 1968, the Swine flu in 2009 (World Health Organization).  
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other pandemics in different countries of the world, using both intuitive and more advanced 

methodologies. To study the age-specific mortality during the Spanish flu and to compare it 

with the age-specific mortality during other pandemics, Luk et al. (2001) calculated the global 

excess mortality caused by influenza and pneumonia during the three pandemics of 1918, 1957 

(Asian Flu), 1968 (Hong Kong Flu). The excess mortality is calculated by subtracting the 

mortality rate during the pandemic from the average mortality rates of the five years before 

the pandemic years. Viboud et al. (2016) realized a study to analyze the mortality related to 

the pandemic of 1957-1959 in 39 countries of the world. They estimate the excess of mortality 

as the difference between the observed mortality during the pandemic and the annual 

mortality time series from 1950 to 1956. Within the European Mortality Monitoring Project 

(EuroMOMO), aimed at monitoring the mortality excess due to influenza in Europe, Mazick 

et al. (2010) compared the all-cause deaths observed in 8 European countries during the 2009 

A(H1N1) pandemic, known as the Swine Flu, with the deaths occurred in the three previous 

years in the same weeks. In particular, they model the expected weekly all-cause deaths for 

all age groups in the absence of pandemic or influenza, exploiting a time series Poisson 

regression model considering trend and seasonality. The same method was used by Gran et 

al. (2013) to study the mortality during the first wave of the A(H1N1) pandemic in Norway. 

A Poisson prediction model was applied by Yang et al. (2012) to estimate the excess mortality 

associated with A(H1N1) in 2009 and seasonal influenza in 1998–2008 in Hong Kong.  

Not surprisingly, given the continuing increase of COVID-19-related deaths, interest in the 

death toll of this shock has grown worldwide. As soon as official data on deaths have become 

available, several researchers have begun to undertake studies similar to those conducted to 

assess the effect of other pandemics, by gauging the COVID-19 impact on mortality through 

intuitive or more sophisticated approaches.4 Such an exercise appears useful for generating 

valuable insights for future pandemic policy. Given the economic, social, and health relevance 

of this issue, many newspapers showed excess mortality data between and within countries, 

using intuitive approaches, i.e., by comparing actual deaths with historical data over 2 or 5 

years. Aron and Muellbauer (2020) quoted three prominent newspapers (The Financial Times, 

The Economist, and The New York Times) that showed the excess of mortality at the country-

level. They also reported results tracked by EuroMOMO for 24 European states and sub-

regions relative to the Z-score, a measure of excess mortality obtained by standardizing data 

on excess deaths. Several scholars have come up with country-level analyses that use more 

sophisticated approaches to estimate excess mortality due to COVID-19. For instance, Felix-

Cardoso et al. (2020) used deviation from the expected value from homolog periods (DEV), 

and the remainder after seasonal time series decomposition (RSTS) considering total, age- and 

gender-specific excess mortality in five countries (England and Wales, France, Italy, 

Netherlands, and Portugal). Rivera et al. (2020) proposed a semiparametric method and a 

conventional time-series method and analyzed nine USA states. Pham (2020), likewise for the 

 
4 This paper provides a comprehensive, but not exhaustive, review of the existing literature on the COVID-19 
impact on mortality. 
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USA situation, dealt with the cumulative number of deaths due to the ongoing COVID-19, 

based on the five-parameter logistic model. He also discusses a new criterion that enables one 

to choose the best model in the set of candidates. At a more detailed geographical level, there 

is research conducted by Hauser et al. (2020) by age group and according to symptom status 

in Hubei province, China, and Northern Italy.  

Concerning the Italian situation, there are two important contributions by public institutions 

that used the intuitive approach for estimating the impact of the COVID-19 pandemic on total 

resident population mortality by age and gender. The Italian National Institute of Statistics 

(Istat) and the National Institute of Health (ISS)5 presented a report at the provincial level6 for 

the period 1st January-30th April 2020, gauging the excess of mortality as differences between 

observed mortality for all-cause and the average for the same period in 2015-2019. The 

National Institute of Social Security (INPS) has drawn a report for the first quarter of 2020, 

using the same approach but weighting mortality for the resident population. The analysis is 

conducted at the provincial level with a focus on Northern municipalities. A similar approach7 

is used by Del Re and Meridiani (2020) for analyzing the principal Italian cities and by 

Ghislandi et al. (2020) for the Lombardy region and five provinces strongly hit by the virus. 

Buonanno et al. (2020), by combining official statistics, retrospective data, and original data 

(i.e., obituaries and death notices), provided an estimate on Lombardy municipalities. They 

showed the reported mortality rate attributable to COVID- 19 accounts only for one half of the 

observed excess mortality rate between March 2020 and March 2019. Two researches used 

counterfactual analysis. In particular, Ciminelli and Garcia-Mandicó (2020) estimated daily 

death registry data for a sample of 1,161 Italian municipalities in seven regions (Emilia-

Romagna, Liguria, Lombardia, Marche, Piemonte, Toscana, and Veneto) by running a 

differences-in-differences regression model using data on mortality from 2016 as a control to 

mortality in 2020. On the contrary, Modi et al. (2020) proposed a comparison of the weekly 

mortality rate for Italian regions in the first four months of 2020 with a model prediction 

obtained from historical mortality rates for the same time of the year. They use two different 

approaches, Conditional Mean with a Gaussian process (CGP) and Synthetic Control Method 

(SCM). The only study, to our knowledge, which considers a municipality level analysis was 

conducted by Blangiardo et al. (2020). They provided a measure of the weekly excess mortality 

by predicting the expected mortality with a Poisson distribution and specifying a Bayesian 

hierarchical model on the log mortality relative risk. They showed the estimates, for males 

and females, distinguishing five macro-areas and focusing on the hardest hit Italian 

municipalities.  

 
5 ISS (National Institute of Health) is the main institution for research, control, and technical-scientific advice on 
public health in Italy. 

6 The provincial-level analysis is conducted on 7,270 municipalities, representing 93.5% of the total population. 

7 Meridiani and Del Re obtained the excess of mortality by subtracting an average historical model, taking into 
account the seasonal mortality, i.e., the average of 2015-2019, normalized to the number of deaths observed in 
the first three weeks of February; Ghislandi et al. compared deaths from 1st of January to 15th of April with the 
average deaths of the same period for the years 2015-2019.  
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Although there are many papers using intuitive and counterfactual approaches, only two 

works, in our knowledge, employ ML techniques to estimate excess mortality. Deprez et al. 

(2017) investigated two classical models for estimating mortality rates and, by applying a 

regression tree boosting machine, detected the weaknesses of different mortality models. 

Levantesi and Pizzorusso (2019) extended the work of Deprez et al. (2017) by investigating the 

ability of ML to improve the accuracy of some standard stochastic mortality models, using not 

only decision tree, but also random forest, and gradient boosting. Moreover, they introduced 

an ML estimator to improve the forecasting quality provided by standard stochastic models. 

However, ours is the first paper to use ML algorithms to estimate excess mortality during the 

COVID-19 pandemic.8  

3. Data and methodology 

3.1 Data 

On the 18th of June 2020, Istat released data on the daily number of all-cause deaths for the 

January/1st-May/15th period on 7,270 of the 7,904 Italian municipalities, covering the 93.5% 

of the Italian total resident population.9 Besides, Istat released data on the daily number of all-

cause deaths for all the Italian municipalities for the years 2015-2019. We exploit such 

historical data and other variables to estimate excess death during the coronavirus outbreak 

in Italy. 

In particular, for the two data-driven approaches, i.e., the trajectory balancing estimator and 

the ML algorithms, we feed the models with 15 covariates covering aspects strongly related 

to deaths such as demographic, health system, economic and contamination (air pollution) 

variables. This set of variables allows us to estimate the mortality trend for 2020 in the 

counterfactual situation, i.e., without the outburst of coronavirus, in a more accurate way. 

As COVID-19 is thought to be more lethal among men and the elderly (SARS-CoV-2 

Surveillance Group, 2020; Dowd et al., 2020; Dudel et al., 2020), we control for the age 

structure, i.e., the share of men in the population, the share of those aged 65+ (overall as well 

as only men) and the share of those aged 80+ (overall as well as only men). 

Besides, we control for the resident population, the overall number of deaths in the previous 

year, and the overall number of deaths in the period from the 1st of January to the 20th of 

 
8 ML algorithms applied to research questions related to COVID-19 are employed by Dandekar and Barbastathis 
(2020) and Magri and Doan (2020). The former made use of a neural network model to compare the role played 
by quarantine isolation measures in Wuhan, Italy, South Korea and the United States in controlling the infectious 
spread. The latter proposed a first-principles ML model to provide quantitative estimates on the infected, deaths 
rate and R0, i.e., the average number of infections generated by a single infected person within a susceptible 
population, equal to one on a few countries (the United Kingdom, Italy, Germany, France, Spain, Belgium, the 
USA, and China). 

9 Due to the creation of Mappano as a new administrative unit in 2017 and to the lack of mortality data for all 
years, we cannot analyze 8 municipalities: Balmuccia, Borgaro Torinese, Caselle Torinese, Leini, Malvicino, 
Mappano, Rassa, and Settimo Torinese. Besides, as 2020 is a leap year, we decided to ignore the deaths that 
occurred on February 29 for reasons of comparability with data from previous years. 
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February 2020, i.e., the 7 weeks before the coronavirus outbreak in Italy. 

We also control for the number of employees as it is likely related to the heterogeneous spread 

of the contagion (see Ascani et al., 2020), for the share of employment in manufacturing and 

for PM-10 as a measure of air quality. The latter two variables take into account that the most 

vulnerable people are those affected by respiratory diseases, conditions associated with high 

mortality in COVID-19 infection, which are more widespread in industrialized areas.10 For 

similar reasons, we also control for the degree of urbanization of the municipality. 

As for health care characteristics, we control for a dummy variable equal to 1 if there is a 

hospital in the municipality and another dummy variable equal to 1 if there is a hospital in at 

least one of the neighboring municipalities. Lastly, as the lockdown imposed after the 

coronavirus outbreak has surely decreased the number of deaths due to road accidents, we 

control for the number of deaths due to road accidents in the previous year. This way, we 

compare municipalities with similar mortality rates due to road accidents. 

3.2 Methodologies 

We use three different sets of approaches to estimate excess-mortality: intuitive, 

counterfactual, and machine learning. As all municipalities are affected by COVID-19, even if 

heterogeneously, we cannot construct the counterfactual scenario by looking at the number of 

all-cause deaths in 2020 for non-affected municipalities. As described below, we exploit data 

on all-cause deaths for the period 2015-2019 to estimate the impact of coronavirus on 

mortality.  

3.2.1 The intuitive approach 

The intuitive approach consists in comparing the actual trend of cumulative deaths in 2020 

with the trends of cumulative deaths observed in the past for the same municipality (in the 

previous year or for the average of previous years). In this case, we consider the average of 

the cumulative number of annual deaths in the period 2015-2019. This approach is easy to 

interpret, even if it does not allow to take into account unobserved factors such as flu 

epidemics or climatic conditions, which can vary over time. The intuitive approach has been 

recently used in several official reports, as mentioned in Section 2.11 

 
10 Employment data come from the Statistical Register of Active Enterprises (ASIA) archive, which covers the 
universe of firms and employees of industry and services. PM 10 data are taken from the European 
Environment Agency 
http://aidef.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2
C%22display_type%22%3A%22tabular%22%7D 

PM-10 data is from 573 monitoring stations distributed across the Italian territory. We employ the kriging spatial 
interpolation to impute the PM10 average yearly value for each municipality. 

11 Specifically, it was adopted by:  

-Istat-ISS report at the Italian provincial level 
(https://www.epicentro.iss.it/coronavirus/pdf/Rapp_Istat_Iss_3Giugno.pdf );  

http://aidef.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%22display_type%22%3A%22tabular%22%7D
http://aidef.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%22display_type%22%3A%22tabular%22%7D
https://www.epicentro.iss.it/coronavirus/pdf/Rapp_Istat_Iss_3Giugno.pdf
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3.2.2 The counterfactual approach 

Counterfactual approaches are usually adopted to estimate the impact of a specific policy 

change (defined ‘treatment’) on an outcome of interest. In this paper, we consider as treatment 

the beginning of the coronavirus diffusion in Italy, i.e., the 21st of February, and as the 

outcome of interest the number of cumulative deaths. As a counterfactual evaluation method, 

we use trajectory balancing (TB), a recent estimator proposed by Hazlett and Xu (2018). Similar 

to the synthetic control method (see Abadie et al., 2010), TB builds a ‘synthetic unit’ for each 

municipality as a weighted average of units not affected by the intervention (defined ‘control 

units’) whose pre-treatment characteristics closely match that unit affected by the treatment 

(defined ‘treated unit’). The ‘synthetic unit’ represents what would have happened to the 

treated unit in the absence of coronavirus spread, i.e., the counterfactual situation. Then, the 

difference between the outcome of interest of the treated unit and the outcome of interest of 

the ‘synthetic unit’ represents the treatment effect, in our case, the estimated excess mortality 

due (directly or indirectly) to coronavirus. This method enables us also to control for 

unobserved factors that can vary over time (see Abadie et al. 2015 for details). 

In more detail, we build the synthetic unit for each municipality considering as control group 

the past values of all Italian municipalities. We take into account the mortality trends in the 

2015-2019 period for the same municipality as well as for municipalities with similar 

demographic, health, and economic characteristics in the pre-treatment period, i.e., between 

1st January and 20th February.12 So, each municipality in each year represents a different unit, 

and the algorithm assigns a weight (between 0 and 1, whose weights sum have to be equal to 

1) to each unit, considering the similarities to the municipality considered in the pre-treatment 

period. Then, the excess of mortality is equal to the difference between the number of 

cumulative deaths in the municipality observed from 21st of February to 15th of May 2020 

and the weighted average of municipalities in the control group with positive weights, 

observed from 21st of February to 15th of May. Therefore, differently from the intuitive 

approach, we do not consider only the ‘same’ municipality to estimate the counterfactual 

scenario. On the contrary, the ‘synthetic unit’ is made up of municipalities (also the same 

 
-INPS report at the Italian provincial level with a focus on Northern Italian municipalities 
(https://www.inps.it/docallegatiNP/Mig/Dati_analisi_bilanci/Nota_CGSA_mortal_Covid19_def.pdf) 

-SISMG to monitor the situation of daily deaths for the elderly population (over 65 years) for Italian cities with 
more than 250,000 inhabitants (https://repo.epiprev.it/index.php/download/andamento-della-mortalita-
giornaliera-sismg-nelle-citta-italiane-in-relazione-allepidemia-di-covid-19-report-1-febbraio-2-maggio-2020-
settimo-rapporto/?wpdmdl=1626&refresh=5ee8e7ed5223a1592322029) 

12 To construct the synthetic unit we limit the set of potential control units following two criteria: the geographical 
area (the North-East, the North-West, the Centre, the South, and the Islands) and the population size (we split 
municipalities in four segments: 0-1,999 inhabitants, 2,000-4,999 inhabitants, 5,000-19,999 inhabitants, and 
20.000+ inhabitants). As suggested in Abadie et al. (2015), by restricting the donor pool to municipalities with 
similar characteristics, we reduce the risk of interpolation bias. The municipalities in the geographical area 
considered have similar local economic structures and sector specialization, factors that can act as a vehicle of 
disease transmission (for details, see Ascani et al., 2020). In other words, we consider the municipalities in which 
the virus could spread equally. Moreover, the same geographical area means a similar impact of seasonal risk 
factors (climatic conditions and flu epidemics). 

https://www.inps.it/docallegatiNP/Mig/Dati_analisi_bilanci/Nota_CGSA_mortal_Covid19_def.pdf
https://repo.epiprev.it/index.php/download/andamento-della-mortalita-giornaliera-sismg-nelle-citta-italiane-in-relazione-allepidemia-di-covid-19-report-1-febbraio-2-maggio-2020-settimo-rapporto/?wpdmdl=1626&refresh=5ee8e7ed5223a1592322029
https://repo.epiprev.it/index.php/download/andamento-della-mortalita-giornaliera-sismg-nelle-citta-italiane-in-relazione-allepidemia-di-covid-19-report-1-febbraio-2-maggio-2020-settimo-rapporto/?wpdmdl=1626&refresh=5ee8e7ed5223a1592322029
https://repo.epiprev.it/index.php/download/andamento-della-mortalita-giornaliera-sismg-nelle-citta-italiane-in-relazione-allepidemia-di-covid-19-report-1-febbraio-2-maggio-2020-settimo-rapporto/?wpdmdl=1626&refresh=5ee8e7ed5223a1592322029
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municipality is included) very similar to the treated one concerning the mortality trend and 

the other characteristics described in the Data section. 

3.2.3 The ML approach 

In the flourishing literature on the use of ML for policy purposes, one is typically concerned 

about two trade-offs: the one between bias and variance and the one between accuracy and 

interpretability. While the first is a common issue of ML techniques in every science domain, 

the latter is distinctive of fields in which ML is employed in the service of public policies that 

also require to take into consideration communication and accountability aspects. More 

complex, ‘black-box’ methods tend to be both more accurate but less, if at all, interpretable. 

So, the choice of the appropriate technique can often fall on simpler algorithms to get more 

intuitive, and hence explainable, outputs, at the expense of a loss in predictive accuracy. In 

our case, however, we are not interested in producing a transparent predictive model which 

clearly explains how the algorithm relates the features to the output. We just want to produce 

the most accurate estimates as possible. The aim, somewhat unusual in the ML literature, is to 

use these techniques to generate a ‘counterfactual’ scenario with predictions of what mortality 

figures would have been under ‘ordinary’ conditions, i.e., if the ‘treatment’ represented by 

COVID-19 would not have happened. This different framework is an advantage for our 

purpose because the trade-off between accuracy and interpretability does not impose a 

constraint on the selection of the techniques to employ. Thus, we opt for a mix of methods: a 

simpler algorithm and two black-box techniques and show that, for this particular task, the 

simpler method performs better than the most complex ones, at least at the aggregate level. 

Specifically, we adopt the following ML algorithms: least absolute shrinkage and selection 

operator (LASSO); and two methods based on regression trees, random forest and stochastic 

gradient boosting. These algorithms are characterized by growing degrees of complexity and 

flexibility.13 LASSO is a relatively simple technique that assumes an underlying linear 

relationship between the outcome and the predictors. In LASSO, the model is penalized for 

the sum of the absolute values of the weights. The implication of this regularization is that, 

depending on the value of the hyperparameter λ, LASSO forces the coefficients of 

uncorrelated or weakly correlated predictors exactly to zero, thus performing variable 

selection. This makes LASSO less flexible but more interpretable than standard OLS, as it 

produces a sparse model in which the outcome is related only to a smaller subset of the 

predictors. By contrast, random forest and boosting are fully non-linear methods, based on 

the aggregation of many decision trees.14 Random forest build several different decision trees 

based on bootstrapped training samples and use at each split of the trees only a random subset 

of the predictors as split candidates, thus decorrelating the trees from one another. The key 

difference with boosting is that while random forest grows trees in parallel, boosting grows 

 
13 Here we only provide an overview of the main differences between the three methodologies. For an exhaustive 
description and more technical details on each of these methods, please refer to Hastie et al. (2009). 

14 Although boosting can be applied to other methods than the decision tree, the one based on decision trees is 
by far one of the most popular versions. 
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them sequentially. Similarly to random forest, boosting is based on the aggregation and 

growth of many decision trees. But unlike random forest, boosting does not involve bootstrap 

sampling, as each tree is based on the ‘residual’ of previously grown trees, i.e., each tree is fit 

on a modified version of the original dataset (Hastie et al., 2009). To make the results more 

comparable across the three methods and capture potential interactions between variables in 

all the selected models, we also include, for LASSO, all the pairwise interactions between the 

predictors as additional features.15 

In the ML literature, the well-established routine is to randomly divide the sample in a training 

set, in which the model is built and tuned, and a testing set, in which its predictive power is 

tested through an evaluation of its out-of-sample predictive accuracy. In order to solve the 

other trade-off we mentioned above, the bias-variance trade-off, cross-validation on the 

training sample can be employed to select the best-performing values of key tuning 

parameters that regulate the complexity or flexibility of the algorithms and reduce the risk of 

overfitting. 

Following this spirit, we proceed as follows: i) we split the 2015-2018 pooled dataset in a 

training sample, composed by 80% of the municipalities, and a testing sample, which consists 

of the remaining 20%; ii) we train and tune the three algorithms on the training sample, on 

which we perform 10-fold cross-validation to select the best-performing tuning 

hyperparameters of each algorithm16; iii) we test how well the algorithms perform in 

predicting observed mortality on unseen data, i.e., on the 2015-18 testing sample; iv) we test 

model performance on the entire 2019 sample, and show that algorithm performance is stable 

over time and that all the ML methods perform, on average, better than the commonly 

adopted intuitive method; v) we repeat this routine on the pooled 2015-2019 data, to train the 

models on most data as possible so as to maximize the accuracy gains; vi) we use the models 

built on the 2015-2019 dataset to predict, for the 2020 sample, estimates of local mortality in a 

‘no-COVID’ scenario; vii) we derive municipality-level excess deaths for all the municipalities 

by subtracting the ML counterfactual estimates from the observed 2020 mortality data 

released by Istat. 

 

 

 

 
15 Unlike LASSO, random forest and boosting take into account by default all the possible non-linearities and 
interactions between the features. 

16 The hyperparameters we select via 10-fold cross-validation are the following: for LASSO, the parameter λ 
which controls the shrinkage penalty; for the random forest, the parameter m, i.e., the number of features 
randomly sampled as candidates at each split (for the number of trees to grow, instead, we use the default value 
of 1000); for boosting, the shrinkage parameter representing the learning rate, the number of trees to fit and the 
minimum number of observations in the terminal nodes of the tree. Cross-validation is used running several 
different models with several candidate values (or combinations of values, in the case of boosting) for all these 
parameters. 
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Table 1 – Descriptive statistics 

 Year 

Variables 2015 2016 2017 2018 2019 2020 

Number of deaths from 01/01 to 

20/02 (per 10,000 inhabitants) 
22.38 18.99 23.42 21.53 21.42 19.37 

Number of deaths in the previous 

year (per 10,000 inhabitants) 
76.98 84.45 80.65 84.77 82.44 82.92 

Population 7815.32 7798.89 7789.81 7776.53 7761.00 7747.41 

Share of those aged 65+ (%) 23.82 24.17 24.48 24.76 25.10 25.10 

Share of those aged 80+ (%) 7.74 7.86 8.00 8.11 8.31 8.31 

Share of men (%) 49.37 49.41 49.47 49.55 49.59 49.59 

Share of men aged 65+ (%) 10.50 10.71 10.91 11.08 11.29 11.29 

Share of men aged 80+ (%) 2.79 2.86 2.94 3.01 3.12 3.12 

Number of employees 2118.02 2131.63 2183.24 2232.40 2232.40 2232.40 

Share of employment in 

manufacturing (%) 
24.94 24.86 24.87 24.52 24.52 24.52 

PM 10 28.30 28.30 25.44 26.88 24.73 24.73 

Hospital in the municipality (%) 7.96 7.89 7.89 7.56 7.48 7.48 

Hospital in neighboring 

municipalities (%) 
44.35 44.02 44.02 42.36 42.14 42.14 

Number of deaths due to road 

accidents (per 10,000 inhabitants) 
0.43 0.44 0.42 0.43 0.42 0.42 

Number of deaths from 21/02 to 

15/05 (per 10,000 inhabitants) 
31.13 28.97 29.09 29.87 29.85 40.34 

Notes: In case of no data available for 2019 and/or 2020, we use the latest year available. We also control for the 

degree of urbanization which is a constant across years (257 municipalities classified as large urban areas, 2,089 

classified as small urban areas and 4,916 classified as rural areas). For comparability, we show the descriptive 

statistics of the 7,262 municipalities for which all-cause deaths data are available in 2020. 

Although our dataset is a panel of Italian municipalities, we ignore the longitudinal 

component of the sample and consider the data as pooled. In fact, we treat each municipality-

year pair as if it was a single observation. We do not deem this as a problematic aspect as we 

focus on a relatively short time period, whereas such a choice could entail issues if some of 

the variables we employ (either the outcome or the predictors) would exhibit drastic changes 

over time within the same municipality, and this is unlikely to happen in a 4-year time span. 

In any case, the descriptive statistics reported in Table 1 show that this is a minor concern in 

our case as the year-by-year variation in mortality data and key predictors is rather low. On 

top of this, please note that future model performance will, in any case, be evaluated on the 
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same sample, i.e., Italian municipalities will stay the same. In other words, we do not have a 

sample but the full population of Italian municipalities.17 

Importantly, we apply our random splitting on municipalities, not on municipality-year pairs. 

Going for the latter would make the same municipality appear in the training set in one year 

(e.g., 2016) but in the testing set in another year (say, 2018). To the extent that the predictors 

do not change or vary slowly over time, this would produce downward-biased estimates of 

the mean squared error (MSE), because the testing data would not truly be ‘unseen’ data, but 

data very similar to their counterparts for the corresponding municipality in the years that 

appear in the training sample.18 By splitting on municipalities, instead, we are sure that the 

training and testing samples do not share in common any municipality, and the same 

municipality can only appear either in the training or in the testing set for the entire timespan. 

4. Estimates 

4.1 Predictive power of all methods employed 

We begin the empirical analysis by examining the forecasting performance of all methods 

employed. Given the presence of approaches different from ML, we have opted for evaluating 

the performance of the various approaches in the estimation of the number of deaths per 

10,000 inhabitants in an ‘ordinary year’. We select 2019 as the ‘ordinary year’ and use data 

from 2015 to 2018 to test the predictive power of all methods. For forecast evaluation, we 

employ the Mean Squared Error (MSE), i.e., the mean of the squared value of the prediction 

errors, as the main model selection approach. However, as MSE is very sensitive to outliers, 

we also report the Mean Absolute Error (MAE), i.e., the mean of the absolute value of the 

errors. These two measures are our metrics to conduct a comparative analysis of predictive 

performances. Table 2 reports the results for all the sets of methods at the dates of March 31st 

and April 30th. 

The first insight from Panel A of Table 2 is that counterfactual and especially ML techniques 

perform better than the intuitive approach. On average, MSE is reduced by up to 18% than if 

using the mainstream approach adopted by several Italian and international institutions. This 

is the key result of the paper. A closer look reveals that LASSO is the best-performing 

algorithm. Random forest and Boosting fare worse, but not by much, and still lead to an 

improvement in precision over both the trajectory balancing and the intuitive approaches. 

This ranking remains the same for both dates considered as well as when looking at the MAE. 

While the superior performance of the linear method is somewhat unusual compared to other 

works in the ML literature, it can be explained by the nature of the predictive problem and the 

limited number of observations and predictors. In such circumstances, it can be expected that 

 
17 This is true for the 2015-2019 dataset but not for 2020, for which, as explained above, we have data for 7,270 
municipalities. However, considering that the model is built, trained, and tested on the 2015-2019 sample, this 
does not apply to the point we are making here. 

18 Tests run on the training and testing samples created via a random split on the municipality-year pairs 
confirmed this suspicion: the observed testing MSEs were slightly lower than those of our benchmark approach. 
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simpler algorithms can match the performance of more complex methods. 

Table 2 - A comparison of predictive accuracy across the different methods 

Panel A – Performance on all municipalities 

Method 
MSE – 31 

March 2019 

MAE – 31 

March 2019 

MSE – 30 April 

2019 

MAE – 30 April 

2019 

Intuitive (historical average) 216.64 8.70 340.80 11.27 

Intuitive (past year) 352.04 10.38 585.56 13.98 

Trajectory balancing 191.91 8.46 310.18 11.03 

LASSO 178.01 8.09 280.03 10.50 

Random forest 180.55 8.16 287.67 10.61 

Boosting 179.63 8.21 282.83 10.71 

Panel B – Performance by population size 

 < 2,000 inhabitants 

Intuitive (historical average) 450.63 14.32 705.24 18.58 

Intuitive (past year) 733.68 16.80 1222.33 23.00 

Trajectory balancing 396.93 13.86 635.83 17.49 

LASSO 369.63 13.29 575.41 16.76 

Random forest 375.50 13.48 593.51 16.98 

Boosting 371.46 13.35 577.79 16.71 

 Between 2,000 and 5,000 inhabitants 

Intuitive (historical average) 56.91 5.89 93.94 7.56 

Intuitive (past year) 91.13 7.38 148.62 9.48 

Trajectory balancing 52.29 5.72 91.52 7.49 

LASSO 46.40 5.36 79.97 5.50 

Random forest 46.60 5.37 79.95 5.52 

Boosting 47.51 5.44 82.52 5.56 

 Between 5,000 and 20,000 inhabitants 

Intuitive (historical average) 18.90 3.37 31.37 4.36 

Intuitive (past year) 29.88 4.19 48.98 5.44 

Trajectory balancing 18.68 3.39 32.58 4.47 

LASSO 16.86 3.25 29.44 3.35 

Random forest 16.69 3.22 28.89 3.33 

Boosting 18.61 3.46 32.85 3.45 

 >= 20,000 inhabitants 

Intuitive (historical average) 4.76 1.70 8.56 2.25 

Intuitive (past year) 6.57 1.95 12.05 2.69 

Trajectory balancing 4.78 1.73 9.81 2.47 

LASSO 4.81 1.77 9.87 1.92 

Random forest 4.12 1.61 7.75 1.68 
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Boosting 6.51 2.09 14.16 2.16 

Notes: There are 3,271 municipalities with less than 2,000 inhabitants, 1,817 municipalities with inhabitants 

between 2,000 and 5,000, 1,682 municipalities with inhabitants between 5,000 and 20,000 and 492 inhabitants with 

more than 20,000 inhabitants. MSE is from the testing sample for ML techniques and from the whole sample for 

the intuitive and counterfactual approaches. 

Panel B of Table 2 reports the performance of all estimators by population size. First and 

foremost, the magnitude of the prediction error is inversely proportional to the municipality 

size. While such sharp inter-class heterogeneity may seem striking, this is actually not 

surprising when one takes into account that the dependent variable is defined as the number 

of deaths per 10,000 inhabitants and that the variability of growth rates of any variable in small 

municipalities is substantially higher. Second, concerning model performance, there is also 

some heterogeneity in performance, depending on population size.19 For example, random 

forest is the best-performing algorithm for municipalities with a population above 5,000 

inhabitants, while LASSO performs somewhat poorly for large municipalities. The intuitive 

approach does not perform well for small and medium-sized municipalities, but much better 

for large municipalities. Importantly, our key insight is confirmed in all subsamples: in no 

case, the intuitive method results as the best-performing method.  

In the following section, we show the excess death mortality estimates for 2020 as computed 

by the best-performing algorithm for each of the four population cut-offs, i.e., LASSO for 

municipalities with less than 5,000 inhabitants and random forest for municipalities with 5,000 

or more inhabitants. 

4.2 Predicting excess deaths during the COVID-19 pandemic 

The excess mortality estimates from all-causes deaths are not uniform throughout Italy, as can 

be seen in Figure 1. Significant differences emerge across and within geographical areas. The 

excess mortality estimates obtained via LASSO and random forest for the period from 

February 21st to May 15th are particularly high in many Northern municipalities. In this area, 

3.61% of the municipalities record a percentage of excess mortality higher than 300% in 

comparison with the counterfactual scenario. In particular, in the first weeks after the 

outbreak, from February 21st to March 15th (Panel A of Figure 1), the excess mortality is over 

300% in many municipalities of the Bergamo province (Lombardy). On March 15th, this 

province was the most affected byCOVID-19, featuring the highest number of infections 

recorded in Italy. At the end of March (Panel B of Figure 1), just over a month after the first 

outbreak and after three weeks of national lockdown, municipalities with excess mortality 

over 100% increase in Northern Italy. Municipalities with mortality excess higher than 100% 

are concentrated in the Lombardy region and the western part of the Emilia Romagna region. 

Many of these territories are located in the provinces that record the highest number of 

infections up to that date, namely the provinces of Milan, Bergamo, Brescia, Cremona, Lodi 

(Lombardy), and the provinces of Piacenza, Parma, Reggio Emilia (Emilia Romagna). On April 

30th (Panel D of Figure 1), many municipalities of these provinces still record an estimated 

 
19  
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excess of deaths higher than 100%, and in some cases, over 300%, compared to the 

counterfactual scenario. On May 15th (Panel E of Figure 1) some of the latter municipalities 

show a lower estimated excess mortality in comparison to the snapshot on 30th of April. Some 

municipalities in Bergamo and Cremona provinces record values below the 300% threshold, 

while other municipalities, principally located in Milan and Reggio Emilia, record values 

below 100%. Clusters of municipalities with estimated excess mortality above 100% are 

observed in other Northern regions affected by the spread of the virus, such as Piedmont and 

Liguria. Both on the 15th and 30th of April (Panels C and D of Figure 1), several municipalities 

in the provinces of Cuneo, Alessandria (Piedmont) and Imperia (Liguria) constitute clusters 

with excess mortality higher than 100%. Similar clusters are in the provinces of Trento 

(Trentino-Alto Adige) and Pesaro-Urbino (Marche). On May 15th (Panel E of Figure 1), a 

decrease in the excess of deaths below 100% seems to occur for some municipalities in Cuneo 

and Imperia provinces. In the other geographical areas, the estimated excess mortality via 

LASSO is much lower. From February 21st to May 15th, the majority of municipalities record 

an estimated excess mortality under 50%, with few municipalities with an excess of deaths 

between 100% and 300%. On April 30th and May 15th (Panel D and E of Figure 1), in Central 

and Southern Italy, municipalities with higher excess mortality deaths seem to be slightly less 

widespread compared to the snapshots on March 30th and April 15th. Figure A.1 and Table A.1 

in the Appendix clearly show that the excess death estimates in the Centre-South of Italy can 

be considered in line with what one would expect to happen in an ‘ordinary year’ (2019 in our 

case), while the observed trend in the North of Italy is extraordinarily abnormal. The 

consistency of the estimates with the geographical evolution of COVID-19 cases confirms that 

the estimated mortality excess from all-cause deaths is connected, both directly and indirectly, 

to the COVID-19 pandemic. A note of caution pertains to small municipalities where even 

sporadic deaths could determine large variations in percentage terms. 

The estimated excess mortality for some municipalities between 21st of February and 30th of 

April is lower than the value estimated for the period 21st of February-15th of April. The 

decrease in the estimates of excess mortality in comparison to the estimates of the first periods 

emerges also by looking at the entire period from 21st of February to 15th of May. As pointed 

out by Istat, the worst-affected provinces in the first phase of the crisis start to experience a 

decrease of deaths in the second half of April. This may, therefore, explain the decrease in the 

excess mortality for those municipalities which had been more severely hit by the infection 

during the period of maximum spread of the virus. This decrease can be connected with the 

reduction of the most vulnerable population and also with the improved diagnostic capacity 

and a minor pressure on the national health system (Istat 2020). However, as already pointed 

out, the estimated excess mortality remains particularly high in many municipalities in 

northern Italy and on 15th of May clusters of particularly high excess mortality seems even 

more defined. 

By aggregating the municipality excess mortality estimates at the country level, we find an 

increase of 41,841 deaths compared to the counterfactual scenario for the period from 21 

February to 15 May 2020. This estimate is in line with the figures obtained by INPS and Istat 

by employing the intuitive approach and it suggests that the ‘official’ number of deaths 

directly due to COVID-19 (31,610) might be severely underestimated. 



17 
 

Figure 1 - Percentage of municipal excess deaths detected from 21.02.2020 to 15.05.2020 with 

respect to the counterfactual scenario estimated via ML techniques 

Panel A: from 21.02.2020 to 15.03.2020 
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Panel B: from 21.02.2020 to 31.03.2020 
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Panel C: from 21.02.2020 to 15.04.2020 
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Panel D: from 21.02.2020 to 30.04.2020 
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Panel E: from 21.02.2020 to 15.05.2020 
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5. Conclusions 

At the time of this writing, the spread of the virus in Italy has either slowed down or stopped 

in all regions, thanks to an increased capacity to contain the virus and to the efficacy of social 

distancing policies. In any case, the severe COVID-19 death toll will leave deep scars in 

hundreds of municipalities especially in Northern Italy. As the pandemic slows down and the 

emergency attenuates, it thus becomes critical to look back and try to quantify human losses 

more precisely at the local level and identify municipalities that paid the highest price. 

In this work, we propose a more sophisticated approach to produce local estimates of excess 

mortality during the COVID-19 pandemic in Italy. Specifically, we show that counterfactual 

and ML methods outperform the mainstream intuitive approach adopted by Italian 

institutions, with particularly sizable predictive gains at the more granular level of small- and 

medium-sized municipalities. After showing that these methodologies improve performance 

by up to 18%, we build a municipality-level dataset of the 2020 excess death mortality figures. 

This dataset, which is shared jointly with the paper, is intended to be available to the general 

public as well as to researchers interested in investigating local determinants and territorial 

factors that may have contributed to the rapid and heterogeneous spread of the pandemic 

across Italy, as well as to the evaluation of policy responses at the local level. We hope our 

methodological contribution will lead to further refinements of the current approaches 

targeted at estimating mortality during the pandemic and, in turn, to a broader understanding 

of the spread of the virus in Italy and the efficacy of the policies adopted to contain its impacts. 

Finally, we emphasize that, in principle, other counterfactual or ML methods may perform 

even better than the ones we apply, thus leading to further increases in statistical accuracy 

compared to the intuitive approach. Besides, the methodological framework to estimate local 

mortality that we propose here could be extended to other countries and, possibly, to the entire 

European Union. In sum, there is indeed room for improvement. We defer these refinements 

to future research. 

 

References 

Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative 

case studies: Estimating the effect of California’s tobacco control program. Journal of the 

American statistical Association, 105(490), 493-505. https://doi.org/10.1198/jasa.2009.ap08746  

Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic 

control method. American Journal of Political Science, 59(2), 495-510. 

https://doi.org/10.1111/ajps.12116  

Ansart, S., Pelat, C., Boelle, P. Y., Carrat, F., Flahault, A., & Valleron, A. J. (2009). Mortality 

burden of the 1918–1919 influenza pandemic in Europe. Influenza and other respiratory viruses, 

3(3), 99-106. https://doi.org/10.1111/j.1750-2659.2009.00080.x  

Aron, J., & Muellbauer, J. (2020). Measuring excess mortality: the case of England during the 

Covid-19 Pandemic. INET Oxford Working Paper 2020-11.   

https://doi.org/10.1198/jasa.2009.ap08746
https://doi.org/10.1111/ajps.12116
https://doi.org/10.1111/j.1750-2659.2009.00080.x


23 
 

Ascani, A., Faggian, A., & Montresor, S. (2020). The geography of COVID-19 and the structure 

of local economies: The case of Italy. GSSI Discussion Paper Series in Regional Science & Economic 

Geography 2020-01.  

Barro, R. J., Ursua, J. F., & Weng, J. (2020). The coronavirus and the great influenza epidemic. 

Lessons from the “Spanish Flu” for the coronavirus’s potential effects on mortality and 

economic activity. NBER Working Paper Series, 26866. DOI: 10.3386/w26866  

Blangiardo, M., Cameletti, M., Pirani, M., Corsetti, G., Battaglini, M. & Baio, G. (2020). 

Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 

pandemic. medRxiv. doi: https://doi.org/10.1101/2020.06.08.20125211  

Buonanno, P., Galletta, S., & Puca, M. (2020). Estimating the severity of covid-19: evidence 

from the italian epicenter. Center for Law & Economics Working Paper Series, 3/2020. 

https://doi.org/10.3929/ethz-b-000414590  

Cerqua, A., & Di Stefano, R. (2020). When did Coronavirus arrive in Europe? 

https://doi.org/10.13140/RG.2.2.14425.26723/4  

Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of 

The Total Environment, 729, 138817. https://doi.org/10.1016/j.scitotenv.2020.138817  

Ciminelli, G., & Garcia-Mandicó, S. (2020). COVID-19 in Italy: An Analysis of Death Registry 

Data. VOXEU, Centre for Economic Policy Research, 22. 

Del Re, D., & Meridiani, P. (2020). Monitoring the Covid-19 epidemics in Italy from mortality 

data. medRxiv. doi: https://doi.org/10.1101/2020.05.07.20092775  

Deprez, P., Shevchenko, P. V., & Wüthrich, M. V. (2017). Machine learning techniques for 

mortality modeling. European Actuarial Journal, 7(2), 337-352. https://doi.org/10.1007/s13385-

017-0152-4  

Dowd, J. B., Andriano, L., Brazel, D. M., Rotondi, V., Block, P., Ding, X., ... & Mills, M. C. (2020). 

Demographic science aids in understanding the spread and fatality rates of COVID-19. 

Proceedings of the National Academy of Sciences of the United States of America, 117(18), 9696-9698. 

https://doi.org/10.1073/pnas.2004911117  

Dudel, C., Riffe, T., Acosta, E., van Raalte, A. A., & Myrskyla, M. (2020). Monitoring trends 

and differences in COVID-19 case fatality rates using decomposition methods: Contributions 

of age structure and age-specific fatality. MPIDR Working Paper 2020-020. 

DOI:10.4054/MPIDR-WP-2020-020  

Felix-Cardoso, J., Vasconcelos, H., Rodrigues, P., & Cruz-Correia, R. (2020). Excess mortality 

during COVID-19 in five European countries and a critique of mortality analysis data. 

medRxiv, 2020.04.28.20083147. https://doi.org/10.1101/2020.04.28.20083147  

Ghislandi, S., Muttarak, R., Sauerberg, M., & Scotti, B. (2020). News from the front: Estimation 

of excess mortality and life expectancy in the major epicenters of the COVID-19 pandemic in 

Italy. medRxiv. DOI:10.1101/2020.04.29.20084335.  

Gran, J. M., Kacelnik, O., Grjibovski, A. M., Aavitsland, P., & Iversen, B. G. (2013). Counting 

https://doi.org/10.1101/2020.06.08.20125211
https://doi.org/10.3929/ethz-b-000414590
https://doi.org/10.13140/RG.2.2.14425.26723/4
https://doi.org/10.1016/j.scitotenv.2020.138817
https://doi.org/10.1101/2020.05.07.20092775
https://doi.org/10.1007/s13385-017-0152-4
https://doi.org/10.1007/s13385-017-0152-4
https://doi.org/10.1073/pnas.2004911117
https://doi.org/10.1101/2020.04.28.20083147


24 
 

pandemic deaths: comparing reported numbers of deaths from influenza A (H 1 N 1) pdm09 

with estimated excess mortality. Influenza and other respiratory viruses, 7(6), 1370-1379. 

https://doi.org/10.1111/irv.12125  

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, 

inference, and prediction. Springer Science & Business Media. 

Hauser, A., Counotte, M. J., Margossian, C. C., Konstantinoudis, G., Low, N., Althaus, C. L., 

& Riou, J. (2020). Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: 

a modelling study in Hubei, China and northern Italy. medRxiv. 

https://doi.org/10.1101/2020.03.04.20031104  

Hazlett, C. & Y. Xu (2018): Trajectory balancing: A general reweighting approach to causal 

inference with time-series cross-sectional data.  Available at SSRN 3214231. 

Leon, D. A., Shkolnikov, V. M., Smeeth, L., Magnus, P., Pechholdová, M., & Jarvis, C. I. (2020). 

COVID-19: a need for real-time monitoring of weekly excess deaths. The Lancet, 395(10234), 

e81. https://doi.org/10.1016/S0140-6736(20)30933-8  

Levantesi, S., & Pizzorusso, V. (2019). Application of machine learning to mortality modeling 

and forecasting. Risks, 7(1), 26. https://doi.org/10.3390/risks7010026  

Luk, J., Gross, P., & Thompson, W. W. (2001). Observations on mortality during the 1918 

influenza pandemic. Clinical Infectious Diseases, 33(8), 1375-1378. 

https://doi.org/10.1086/322662  

Mazick, A., Gergonne, B., Wuillaume, F., Danis, K., Vantarakis, A., Uphoff, H., ... & Mølbak, 

K. (2010). Higher all-cause mortality in children during autumn 2009 compared with the three 

previous years: pooled results from eight European countries. Eurosurveillance, 15(5), 19480. 

https://doi.org/10.2807/ese.15.05.19480-en  

Modi, C., Boehm, V., Ferraro, S., Stein, G., & Seljak, U. (2020). How deadly is COVID-19? A 

rigorous analysis of excess mortality and age-dependent fatality rates in Italy. medRxiv. 

https://doi.org/10.1101/2020.04.15.20067074  

Mortara, G. (1925). La salute pubblica in Italia durante e dopo la guerra. Laterza & figli. 

Murray, C. J., Lopez, A. D., Chin, B., Feehan, D., & Hill, K. H. (2006). Estimation of potential 

global pandemic influenza mortality on the basis of vital registry data from the 1918–20 

pandemic: a quantitative analysis. The Lancet, 368(9554), 2211-2218. 

https://doi.org/10.1016/S0140-6736(06)69895-4  

Pham, H. (2020). On estimating the number of deaths related to Covid-19. Mathematics, 8(5), 

655. https://doi.org/10.3390/math8050655  

Pinnelli, A., & Mancini, P. (1998). Mortality peaks in Italy in the late 19th and early 20th 

centuries: trends by age and sex. European Journal of Population, 14(4), 333-365. 

https://doi.org/10.1023/A:1006182029835  

Rivera, R., Rosenbaum, J., & Quispe, W. (2020). Estimating Excess Deaths in the United States 

Early in the COVID-19 Pandemic. medRxiv. https://doi.org/10.1101/2020.05.04.20090324  

https://doi.org/10.1111/irv.12125
https://doi.org/10.1101/2020.03.04.20031104
https://doi.org/10.1016/S0140-6736(20)30933-8
https://doi.org/10.3390/risks7010026
https://doi.org/10.1086/322662
https://doi.org/10.2807/ese.15.05.19480-en
https://doi.org/10.1101/2020.04.15.20067074
https://doi.org/10.1016/S0140-6736(06)69895-4
https://doi.org/10.3390/math8050655
https://doi.org/10.1023/A:1006182029835
https://doi.org/10.1101/2020.05.04.20090324


25 
 

Viboud, C., Simonsen, L., Fuentes, R., Flores, J., Miller, M. A., & Chowell, G. (2016). Global 

mortality impact of the 1957–1959 influenza pandemic. The Journal of infectious diseases, 213(5), 

738-745. https://doi.org/10.1093/infdis/jiv534  

Yang, L., Chan, K. P., Cowling, B. J., Chiu, S. S., Chan, K. H., Peiris, J. S. M., & Wong, C. M. 

(2012). Excess mortality associated with the 2009 pandemic of influenza A (H1N1) in Hong 

Kong. Epidemiology & Infection, 140(9), 1542-1550. 

https://doi.org/10.1017/S0950268811002238  

 

 

 

 

  

https://doi.org/10.1093/infdis/jiv534
https://doi.org/10.1017/S0950268811002238


26 
 

Appendix 

Figure A.1 - Percentage of municipal excess deaths detected from 21.02.2019 to 30.04.2019 

with respect to the predicted deaths estimated via ML techniques 
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Table A.1 – Share of excess deaths ‘observed’ in 2019 and in 2020 by geographic and 

population size 

Italy 

 Share of municipalities 

with excess deaths 

above 50% 

Share of municipalities 

with excess deaths 

above 100% 

Share of municipalities 

with excess deaths 

above 300% 

 2019 2020 2019 2020 2019 2020 

Overall 16.82% 32.35% 7.88% 17.86% 0.81% 3.30% 

       

Less than 2,000 

inhabitants 
20.02% 35.22% 11.26% 20.51% 0.81% 3.82% 

Inhabitants >= 

2,000 and < 5,000  
20.89% 33.74% 9.31% 18.05% 1.67% 3.19% 

Inhabitants >= 

5,000 and < 20,000  
10.86% 29.73% 2.33% 15.93% 0.11% 3.27% 

More than 20,000 

inhabitants 
1.34% 17.07% 0.00% 6.10% 0.00% 0.40% 

 

North 

 Share of municipalities 

with excess deaths 

above 50% 

Share of municipalities 

with excess deaths 

above 100% 

Share of municipalities 

with excess deaths 

above 300% 

 2019 2020 2019 2020 2019 2020 

Overall 18.22% 46.50% 8.37% 28.41% 0.85% 5.74% 

       

Less than 2,000 

inhabitants 
18.60% 45.25% 10.12% 29.44% 0.45% 6.30% 

Inhabitants >= 

2,000 and < 5,000  
23.54% 49.13% 10.98% 30.19% 2.30% 5.58% 

Inhabitants >= 

5,000 and < 20,000  
14.69% 47.84% 3.70% 27.23% 0.19% 5.78% 

More than 20,000 

inhabitants 
2.49% 38.69% 0.00% 14.57% 0.00% 1.01% 
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Centre-South 

 Share of municipalities 

with excess deaths 

above 50% 

Share of municipalities 

with excess deaths 

above 100% 

Share of municipalities 

with excess deaths 

above 300% 

 2019 2020 2019 2020 2019 2020 

Overall 15.08% 13.71% 7.27% 3.99% 0.77% 0.10% 

       

Less than 2,000 

inhabitants 
23.50% 20.67% 12.86% 7.57% 1.32% 0.22% 

Inhabitants >= 

2,000 and < 5,000  
17.56% 13.13% 7.22% 1.80% 0.89% 0.00% 

Inhabitants >= 

5,000 and < 20,000  
6.28% 6.16% 0.70% 1.23% 0.00% 0.00% 

More than 20,000 

inhabitants 
0.62% 2.39% 0.00% 0.34% 0.00% 0.00% 

 

 


