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Abstract 

Using police archives, we apply machine learning algorithms to predict corruption crimes in 

Italian municipalities during the period 2012-2014. We correctly identify over 70% (slightly less 

than 80%) of the municipalities that will experience corruption episodes (an increase in 

corruption crimes). We show that algorithmic predictions could strengthen the ability of the 2012 

Italy’s anti-corruption law to fight white-collar delinquencies.  
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“Corruption is widespread throughout Italy and represents one of the greatest obstacles to its growth, not only in civil terms but also in social 

and economic ones. Identifying the areas most exposed to corruption – with specific relation to different regional features – and drafting an 

Italian map of bribery is an essential tool to fight it.”  

Raffaele Cantone, President of the Italian Anti-corruption Authority from 28 April 2014 to 23 October 2019. Trento, June 4 2016 

 

 

 

 

 

1. Introduction 

Corruption in Italy is a major problem. According to the index of Transparency International,1 

which inversely ranks 180 countries by their perceived levels of public sector corruption as 

stated by experts and businesspeople, in 2018 Italy was in the 52nd position, delayed from 

Germany (11th), France (21st), and Spain (41st). Corruption is unevenly distributed across the 

country: traditionally linked with the presence of organized crime in the South, bribery has 

recently moved north both because organized crime converted from illegal activities to 

“normal” entrepreneurial business, and due to the emergency of clientelism and graft as 

cornerstones of the country's political establishment (see, for instance, Mocetti and Rizzica, 

2019). As underscored by the former President of the Italian Anti-corruption Authority (quoted 

above), having a map of the areas where to concentrate investigation efforts should be 

considered a priority. 

This paper uses machine learning (ML) algorithms in an attempt to provide such a map. ML 

techniques have been developed in computer science and statistical literature and provide a 

powerful toolbox to deal with predictive tasks (Varian, 2014). In particular, their focus is on 

minimizing the out-of-sample prediction error and generalizing well on future unseen data 

(Athey and Imbens, 2017. 2019; Mullainathan and Spiess, 2017). Applications of ML algorithms 

are already numerous in many fields. For instance, they include:  predicting the riskiest patients 

for which a joint replacement would be futile (Kleinberg et al., 2015); improving over judges’ 

decision on whether to detain or release arrestees as they await adjudication of their case 

(Kleinberg et al., 2018); targeting restaurant hygiene inspections (Kang et al., 2013); predicting 

highest risk youth for anti-violence interventions (Chandler et al., 2011); predicting the 

effectiveness of teachers in terms of value added (Rockoff et al., 2011); hiring police officers 

who will not behave violently, as well as promoting the best teachers only (Chalfin et al., 2016); 

 
1 See https://www.transparency.org/en/. 

https://www.transparency.org/en/
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improve poverty (Blumenstock et al., 2015; Jean et al., 2016; McBride & Nichols, 2018; Perez et 

al., 2019) and food insecurity (Hossain et al., 2019; Knippenberg et al., 2019; Lentz et al., 2018) 

targeting; enhance the effectiveness of public programs (Andini et al., 2018; Andini et al., 2019). 

More specifically linked to the content of this paper, another active area of research and 

application of ML can be found in criminology and goes under the heading of ‘predictive 

policing’. The idea is that of predicting (and preventing) crime before it happens, in order to 

reduce criminality and use public resources more efficiently.  

We focus on white-collar crimes, which include, among others, corruption, fraud, and collusion. 

According to the FBI, the economic costs of such crimes are significantly larger than those 

associated with street crimes (Healy and Serafeim, 2016). Our prediction is based on the data 

taken from SDI (‘Sistema d'Indagine’), the Ministry of Interior archive that contains records of 

all the crimes committed in the national territory at the municipality level. This dataset, derived 

from the IT system used by the police for investigation activities, has two major advantages: 

first, because it reports all the open cases which are under investigation by the police, it 

provides an instantaneous picture of the criminal activity in the municipality, whereas most 

datasets on crimes only report arrests or convictions which occur with a long delay with respect 

to when the crime is committed. Therefore, we are able to base our prediction on an updated 

picture of the corruption activity going on over the country. If, instead, we had to use the data 

on arrests or convictions, our out-of-sample accuracy would have been worse given the delay. 

Second, our dataset is less subject to problems of underreporting of crimes because, on top of 

the reports filed by those affected by the crimes, it also contains records of all the investigations 

opened by the police forces themselves. This is a particularly valuable aspect in the case of 

corruption crimes: in such crimes, neither of the parties involved has any interest in reporting 

the crime because they would both be guilty of a criminal offence. The classification of crimes 

available in the SDI is made directly by the Ministry of Interior on the basis of the respective 

applicable law. We thus identify as white-collar crimes all crimes committed against articles 

314-323 (crimes against public administration) and 479-481 (crimes against public faith) of 

the Italian penal code: these include corruption, bribery, embezzlement, abuse of authority and 

fraud. 

 

Armed with the SDI data (and a large set of municipality-level features), we train and test our 

algorithms on the data referring to the period 2011-2012. Then, we evaluate the accuracy of 

the predictions by using data from 2012 to 2014. The results we present are based on a 
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classification tree (Hastie et al., 2009). It is well known that the prediction accuracy of this 

algorithm might be inferior to that of other possible alternatives. However, we decide to focus 

on a classification tree because it provides the highest transparency concerning the variables 

chosen for the prediction. Our results show that a classification tree provides a quite high out-

of-sample prediction accuracy. Depending on the outcome variable, which can be specified in 

levels or variations, we are able to predict from 70% to 80% of the local corruption. The 

prediction depends on the values of a few variables, primarily referring to the characteristics 

of the local labour and housing markets, and the previous history of white-collar crimes. We 

also discuss how ML predictions can be used to strengthen the effectiveness of the 2012 Italy’s 

anti-corruption law. For instance, the law envisages a stricter anti-corruption regulation for the 

municipalities with more than 15 thousand inhabitants. We show that such a threshold 

identifies only a fraction of the municipalities that have experienced corruption during the 

period 2012-2014, while ML predictions would have significantly improved anti-corruption 

efforts. We also discuss a number of issues related to the adoption of ML algorithms to fight 

corruption. For instance, we argue that our estimates at this stage are likely to provide only a 

very conservative approximation of the overall prediction gains attainable from ML.  We also 

underscore that ML adoption could provide higher policy standards in terms of both 

transparency and bias reduction. 

The paper is structured as follows. Section 2 provides a short overview of the literature. Section 

3 highlights the data we use and provides a brief description of the ML methodology. The results 

are illustrated in Section 4. The comparison with the 2012 law is in Section 5. Section 6 

concludes by offering a number of issues for discussion. 

2. Literature review 

The idea of being able to predict (and prevent) crime before it happens is gaining increasing 

interest across both researchers and police forces (Brayne & Christin, 2020; Meijer and 

Wessels, 2019). To this aim, several techniques have been used and refined over time (see 

Grover et al., 2007). A first set of methods involves purely statistical approaches to predict 

crime by means of individual “profiling”.  Such methods rely on individual characteristics, such 

as their social connections and other personal data on behaviours. A second set of methods 

emphasizes the spatial clustering of criminal activity and leads to the identification of the so-

called hot spots, i.e., areas where offenders tend to repeat their crime. Both approaches share 

some drawbacks, as they both rely on a time-consistency assumption: in the first case, the 
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unchanging modus operandi of the offender; in the second, the persistence of the same area as 

a crime target.  As argued by Brayne (2017), the availability of big data and ML techniques has 

recently allowed to moving from hotspot policing to predictive policing, i.e., the identification 

of police targets to prevent or solve past crimes through statistical predictions (Perry et al., 

2013). Previous work on predictive policing mainly refers to the US and crimes such as 

burglaries, thefts, violence against the person (see Meijer and Wessels, 2019, and Bennett and 

Chan, 2018, for a review). Mohler et al. (2015) employ an ML-based model to predict where 

crimes will take place and test the effectiveness of such predictions against current hotspot 

mapping practice through a random experiment involving two divisions of Los Angeles (US) 

and Kent (UK) police. They show that their models predict 1.4–2.2 times as much crime 

compared to a dedicated crime analyst using existing criminal intelligence and hotspot 

mapping practice.  Further, there are some recent applications focusing on European countries 

too: Mastrobuoni (2020), for instance, employs a predictive policing software used by the police 

department of Milan to study individual crime incidents, providing evidence of the substantial 

increase in police productivity guaranteed by the software. 

Machine learning tools are now widely implemented in predictive policing across the US. A 

notable example is Chicago where, in 2013, an algorithm was released to predict who is more 

likely to be involved in shooting (Strategic subject list) in order to prioritize resources to focus 

on individuals at highest risk. In Europe, the use of algorithms in policing is at an embryonal 

level and mostly involves the United Kingdom. In particular, Durham Constabulary has 

employed a risk assessment tool, constructed using random forests, to predict the risk of 

reoffending and used to decide whether some individuals should be prosecuted or not (Oswald 

et al., 2018). Finally, another recent work (Wheeler & Steenbeek, 2020) employs the random 

forest method to produce long-term crime forecasts for robberies in Dallas. 

Differently from other types of crimes, white-collar offences have been scantily studied. López-

Iturriaga and Sanz (2018) refer to the case of Spanish provinces and use info on corruption 

episodes reported by the media or that went to court between 2000 and 2012 to devise a neural 

network prediction model for corruption. Clifton et al. (2017) focus on another typical case of 

white-collar criminality, i.e., financial fraud, which is predicted employing random forest 

algorithms on US local-level data. Ash et al. (2020) apply machine learning techniques, 

specifically tree-based gradient boosting, to detect Brazil’s local-government corruption using 

budget accounts data. Lima and Delen (2020) employ a variety of ML algorithms, including 

random forests, support vector machine and artificial neural networks, on cross-country data 
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to identify the most important predictors of corruption at the country level. Gallego et al. (2020) 

use a large micro dataset with more than 2 million public contracts to investigate the potential 

of ML to track and prevent corruption episodes in public procurement in Colombia and 

understand its main drivers. Finally, Decarolis and Giorgiantonio (2020) use three machine 

learning routines, namely LASSO, ridge regression and random forest, on novel data concerning 

the procurement of public works to predict indicators of corruption risk, showing the potential 

of the flexibility of such algorithms in detecting corruption in public procurement.  

ML tools aiming at preventing white-collar crimes are little used. In Mexico, in order to tackle 

corruption in public procurement, a corruption risk index was devised for about 1500 buying 

units. Moreover, the Tax Administration Service has tested the effectiveness of machine 

learning algorithms to detect frauds from taxpayers: a pilot scheme showed that thanks to such 

algorithms, it was possible to individuate fraudulent operations much more quickly (in about 

1/3 of the time) than previous investigation methods2. In Ukraine, an ML tool was recently 

launched to fight corruption and fraud in public procurement. Such a tool identifies tenders 

with a high risk of corruption; when tenders or purchases are flagged by the tool, they are 

reported to the authorities to be investigated. 

3. Data and methods 

We first describe the data used for the ML predictive exercise (3.1) and then provide a short 

overview of the specific algorithms we employ (3.2). 

3.1. Data 

The source of crime data is the SDI archive by the Ministry of the Interior. Our database includes 

crime data for almost all Italian municipalities (8,049 out of 8,092 municipalities); data on 

white-collar crimes, which is the main object of our study, is available for 7,794 municipalities 

over the years 2008-2014. In particular, we know the number of white-collar crimes for 

municipality and year, while the economic value of the crime and how many people are 

involved are unknown. We want to predict two variables at the municipality level: (i) WC crime 

rate, a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-

collar crimes per 1,000 inhabitants) is positive, and 0 otherwise; (ii) ∆ WC crime rate, a binary 

variable taking value 1 if the white-collar crime rate has increased with respect to the previous 

 
2 Towards an AI strategy in Mexico. Harnessing the AI revolution. Available at: https://7da2ca8d-b80d-4593-
a0ab-5272e2b9c6c5.filesusr.com/ugd/7be025_e726c582191c49d2b8b6517a590151f6.pdf . 

https://7da2ca8d-b80d-4593-a0ab-5272e2b9c6c5.filesusr.com/ugd/7be025_e726c582191c49d2b8b6517a590151f6.pdf
https://7da2ca8d-b80d-4593-a0ab-5272e2b9c6c5.filesusr.com/ugd/7be025_e726c582191c49d2b8b6517a590151f6.pdf


7 
 

year, and 0 otherwise.3 Figures 1 and 2 provide maps for the value of our two target variables 

in the year 2012.  

[Figure 1] 

[Figure 2] 

The set of predictors consists of socio-economic, demographic, geographic and biophysical 

characteristics, available at the municipality level. More specifically, we employ three different 

data sources: the 2011 version of the “8 Mila Census” dataset by the Italian National Institute 

of Statistics (ISTAT), which includes a wide variety of variables and indicators capturing socio-

economic, labour market, demographic and housing market characteristics for Italian 

municipalities;4 data on the number of foreign people by nationality, again drawn from ISTAT, 

from which we select the share of foreign people from the three most important regions 

(namely Southern Europe, Eastern Europe and Northern Africa); data on the number of police 

stations within 50 kilometres from the municipality centroid and the Euclidean distance from 

the centroid to the closest police station;5 climate data from the University of Delaware weather 

database (Matsuura & Willmott, 2015),6 to control for biophysical and climatic heterogeneity 

across the country.7 As a result, we are able to assemble a dataset with approximately 100 

features or predictors. We also employ as additional predictors lagged (2008-2011) values of 

the outcome variables. Table 1 reports summary statistics for a selected list of features. The 

average municipality population is roughly equal to 7,500 inhabitants, while the share of 

immigrants is lower than 6%. The share of young people with higher education (19%) is quite 

reduced compared to countries with a similar level of socio-economic development. There are 

significant gender and youth dimensions in the labour market. Police stations are quite 

widespread across the country, and the climate pattern (13 °C on average) is quite enjoyable. 

All of these variables refer to 2011. Therefore, when we employ our machine learning algorithm 

to inform the actual anti-corruption strategy, we will be using only features available to the 

Italian policymaker at the time of the ratification of the law, i.e., in 2012.  

 
3 As the data for the bulk of our features are not available before 2011, and since we want to put ourselves in the 
shoes of the policymaker in the year before the anti-corruption law, we use only 2012-2014 data on white-collar 
crimes to build our outcome variables and employ the data of the previous years as additional predictors capturing 
lagged crime rates. 
4 The 8 Mila Census database is publicly available at the following link: http://ottomilacensus.istat.it/. 
5 Freely available here. 
6 The raw data on police stations at the local level are available here. 
7 A recent flourishing literature provides empirical evidence on the causal links between local weather and violent 
and non-violent crime trends. See, among the others, Horrocks & Menclova (2011), Ranson (2014), Chen et al. 
(2015) and Baysan et al. (2018).  

http://ottomilacensus.istat.it/
http://climate.geog.udel.edu/~climate/html_pages/download.html
http://www.datiopen.it/it/opendata/Uffici_di_Polizia_Questure_e_Commissariati_in_Italia
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[Table 1] 

Table 2 provides descriptive statistics for the white-collar crime variables over the 2008-2014 

period. It is interesting to note a sharp increase in white-collar crimes in 2011 compared to 

previous years: the number of municipalities with corruption episodes more than doubled. 

Despite slight decreases in the following years, corruption crimes are sensibly higher for the 

2011-2014 period compared to 2008-2010.  

 [Table 2] 

3.2  Methods 

ML techniques use highly flexible functional forms. The degree of flexibility is the result of a 

well-known trade-off: allowing for more flexibility improves the in-sample fit at the cost of 

reducing the out-of-sample fit (over-fitting). In order to choose the optimal level of complexity, 

ML algorithms typically rely on empirical tuning. Following the standard ML routine, we 

randomly split our sample into two sets, containing, respectively, 2/3 and 1/3 of municipalities. 

We use the first set to train our algorithms (training set), while we use the second to test them 

(testing set). In order to solve the bias-variance trade-off (Hastie et al., 2009), we also employ 

10-fold cross-validation on the training sample to select the best-performing values of the key 

tuning parameter. While we train our model using 2011 features and 2012 outcomes, the 

predictive performance of our preferred algorithm is also evaluated over the years 2013 and 

2014. To this aim, we decided to consider municipalities belonging to the testing set only. 

Employing our algorithm to predict 2013 and 2014 outcomes also for the municipalities in the 

training set would lead to an upward bias in the accuracy. The reason is that most of the features 

that would be used to predict 2013 and 2014 outcomes in the training set of municipalities 

refer to the year 2011, and hence they were already used to “learn” the model in the same set 

of municipalities. 

Our ML algorithm is the classification tree (Hastie et al., 2009). Classification trees are 

particularly suited for applications in which the decision rule needs to be transparent (Lantz, 

2019), such as when the output of the model must be shared in order to facilitate public decision 

making (Andini et al., 2018). As it will be clear in Section 4, the output of a decision tree 

algorithm is intuitive and can be easily understood also by people without a strong statistical 

background, making it very appealing for policy targeting purposes. From a technical point of 

view, the algorithm divides the data into progressively smaller subsets to identify patterns that 
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can be used for predicting a specific binary output. Trees are highly flexible methods because 

non-linearities and interactions are easily captured by the sequence of splits. In principle, 

classification trees allow one to reach a perfect in-sample fit by adding more and more leaves, 

but, in practice, regularization via tree pruning and cross-validation is used to tune the best-

performing hyperparameter that reduces the risk of overfitting. In fact, a high number of levels 

in a tree is likely to overfit the data, leading to a predictive model which performs very well in-

sample, but poorly out-of-sample. The solution to this issue is to reduce the complexity of the 

tree by setting a complexity parameter (cp) and using it to prune the tree. As specified above, 

we select the optimal value of cp via 10-fold cross-validation in the training dataset, which in 

our case corresponds to the complexity parameter value of the unpruned tree. 

Before performing our classification exercise, we need to tackle the challenge stemming our 

highly imbalanced dataset. Our outcome variables are both highly skewed toward zeros (see 

Figures 1 and 2 and Table 2). In the case of imbalanced datasets, ML algorithms run into the so-

called “accuracy paradox”: they provide predictions featured by a high out-of-sample accuracy 

(even greater than 90%), but useless for practical purposes, because their prediction 

performance is dominated by the accurateness of predicting the over-represented label (y=0 in 

our case). Using the machine learning jargon, predictive exercises on imbalanced datasets 

result in a very high specificity (i.e., true negatives) but an extremely low, if not null, sensitivity 

(true positives).  

This is visible in our case by looking at the prediction accuracy we obtain by using the original 

sample: Tables A.1 and A.2 in the Appendix show that the imbalanced data cannot be employed 

to identify ‘corrupted’ municipalities successfully. With reference to 2012, the percentage of 

correctly predicted cases is greater than 90%, both for WC crime rate and ∆ WC crime rate, but 

the accuracy for the y=1 cases is slightly above 30% for the former outcome and 0 for the latter. 

To tackle this issue, we make use of the Synthetic Minority Oversampling Technique (SMOTE) 

routine developed by Chawla et al. (2002) to rebalance the two classes in our training sample. 

This technique oversamples the under-represented cases and undersamples the majority class, 

leading to a smaller rebalanced dataset.  To oversample to minority class, SMOTE generates 

new synthetic observations by considering the k (10, In our case) nearest neighbours of each 

minority class sample (Chawla et al., 2002).  We implement the SMOTE algorithm only on the 

training subsample, leaving the testing sample untouched.  This means that the training dataset 

is artificially balanced over the two outcomes, while the prediction is tested on the original 

skewed sample. After rebalancing our training dataset, the two outcomes are almost perfectly 
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balanced between the two classes, and the sample size is sharply reduced due to the 

undersampling of the majority class.8 On these rebalanced data, we then perform our decision 

tree algorithm, whose results are provided in the next section. 

4. Results 

Figure 3 pictures the classification tree that predicts the probability that a given municipality 

experiences corruption crimes (i.e., the 2012 crime rate is greater than 0). The algorithm uses 

three predictors: municipality population, 2011 white-collar crime rate, and the share of the 

working-age population involved in daily extra-municipal mobility for study or work reasons 

(from now on, mobility share). For instance, municipalities with a population larger than 7,390 

residents are predicted as prone to corruption if their 2011 white-collar crime rate was higher 

than a given cutoff (0.0000349). If the 2011 crime rate was lower than that threshold, the 

algorithm takes into account the value of the mobility share and predict as potentially 

‘corrupted’ the places with a mobility share lower than 39.6%. Figure 4 illustrates the 

classification tree for the outcome defined in variations. In this case, the decision tree selects 

predictors that refer to characteristics of the local labour and housing markets.  For instance, 

the algorithm predicts an increase of white-collar crimes in municipalities with more than 

7,361 inhabitants, with a mobility share higher than 38%, where buildings have less than 106 

square meters on average, and the share of buildings in disuse is larger than 1.2%.  

[Figure 3] 

[Figure 4] 

Tables 3 and 4 highlight the prediction accuracy of the classification trees described in Figures 

3 and 4, respectively. We evaluate such performance for the years 2012, 2013 and 2014 for the 

municipalities belonging to the testing set only, as argued in Section 4.  Concerning the WC crime 

rate, overall accuracy is very high and consistently around 85% for the three years (Table 3). 

Specificity is even higher. Sensitivity is lower, ranging from 72.2% in 2014 to 74.3% in 2012, 

but still quite high if compared with the pre-SMOTE performance of the algorithm, reported in 

Table A.1 (where sensitivity for the 2012 sample is 31.2%, while the overall accuracy is 

 
8The sample size is 1468 observations for the rebalanced training dataset using the ∆ WC crime rate target variable, 
of which 722 negatives (y=0) and 746 positives (y=1); and 2033 observations for the rebalanced training dataset 
using the WC crime rate target variable, of which 993 negatives (y=0) and 1040 positives (y=1). 
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92.6%).9 The prediction accuracy for the tree described in Fig. 4, where the outcome is defined 

in variations, is slightly lower. The percentage of correctly predicted cases is always around 

75%, and the prediction accuracy related to the y=1 cases is substantial (from 74% to 80%), 

and in some cases, even higher than specificity. For comparison, notice that the classification 

tree without SMOTE (Table A.2, which refers to 2012) would have delivered an overall accuracy 

of over 93%, due to a 100% accuracy for y=0 and a 0% accuracy for y=1.10  

[Table 3] 

[Table 4] 

ML algorithms use highly non-linear functional forms. However, endowed with the same set of 

predictors used to produce the classifications trees of Figures 3 and 4, one can also run simpler 

logit regressions to gauge the magnitude of the accuracy gains due to more complex functional 

forms. Tables A.3 and A.4 provide such regression results for the two outcomes, respectively. 

We find that logit predictions drastically reduce sensitivity when the outcome is defined in 

variations, while when the outcome is WC crime rate, the benefits of more complexity involve 

the 2012 and 2014 predictions.11 Finally, the classification tree for WC crime rate uses the 

lagged (2011) WC crime rate to derive its predictions. This variable is taken from the SDI 

archive, and it is routinely available only to the police department. An interesting robustness 

test refers to the scenario where such variable is unavailable. We made the algorithm blind to 

the lagged (2008-2011) values of the crime variables taken from SDI. Results are depicted in 

Table A.5. We find only a limited reduction in overall accuracy. Unexpectedly, we observe that, 

when we do not consider previous corruption episodes, the sensitivity of the ML predictions 

increases.  

5. Algorithms in the service of  the anti-corruption law 

In 2012 the law 190,12 named “Rules for the prevention and repression of corruption and 

unlawfulness in public administration” and informally known as “Legge Severino” (from the 

 
9 The corresponding tree for the pre-SMOTE dataset is reported in Figure A.1. There are only two predictors in the 
tree: population and the extra-municipality mobility share. 
10 There is no corresponding tree for this table on the pre-SMOTE classification performance because there is no 
tree (the algorithm predicts all zeroes). 
11 We also implemented a simpler logit model with only a limited set of predictors typically associated with 
corruption crimes. Specifically, we ran a model with a similar vector of covariates (population, employment and 
unemployment rates, educational attainment variables) to that included in the specification adopted by De Angelis 
et al. (2020). In this case, the out-of-sample sensitivity performance of this basic model was substantially worse 
than that of the classification tree for both outcome variables in all years. 
12 See http://www.anticorruzione.it/portal/public/classic/MenuServizio/FAQ/Anticorruzione. 

http://www.anticorruzione.it/portal/public/classic/MenuServizio/FAQ/Anticorruzione
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name of the then Minister of Justice) introduced new and more stringent criteria to fight 

corruption in Italy. For instance, it expanded the definition of corruption and enhanced 

transparency and disclosure requirements for public-sector workers. On top of these general 

prescriptions, which apply to the entire Italian public administration, the law also introduced a 

number of additional restrictions related to the possibility of assigning directive positions in 

public administrations to those who had held political responsibilities in the previous years. 

Crucially, at the local level, these more restrictive rules only apply to municipalities with more 

than 15 thousand inhabitants.13 The rationale behind the decision was that of excluding smaller 

municipalities where the costs related to the regulation were larger than the associated benefits 

because those municipalities would have experienced very few cases of white-crime episodes 

anyway. Smaller municipalities also receive fewer public resources, and this makes them, in 

principle, less exposed to corruption risk. According to new estimates provided by De Angelis 

et al. (2020), the impact of law 190 seems to be favourable, at the least in the South of Italy, 

where the municipalities over 15 thousand residents experienced fewer corruption episodes 

linked to the EU regional transfers.  

We show now that our algorithms can help strengthen effectiveness of the anti-corruption 

regulation. We consider (as before) the set of municipalities belonging to the training set (2577) 

and evaluate the accuracy of the ML algorithm and the anti-corruption threshold when 

predicting (a) municipalities with a positive crime rate and (b) municipalities with an 

increasing crime rate. Table 5 considers the outcome in levels.14 Note that the threshold 

envisaged by the law does an excellent job as for the y=0. For instance, in 2012, municipalities 

under the cutoff that do not experience corruption episodes represent 95.8% of the sample. 

Conversely, above the cutoff, only 48.9% of the municipalities are caught in the more severe 

anti-corruption net. ML predictions imply a huge gain in sensitivity (+27.5% over the three 

years) at the cost of a reduced specificity (-9.1%). Table 6 provides the same analysis for the 

outcome defined in variations. A similar pattern emerges. With the ML prediction, sensitivity 

would have risen by 43.6% over the entire time span considered; on the other hand, specificity 

would have been reduced by 17.7%. 

[Table 5] 

 
13 Cf. Articles 7, 8, 11, 12, 13, 14 of Legislative Decree no. 39/2013. 
14 A potential issue refers to the timing of the introduction of the law. To the extent that the entry into force of the 
law affects levels and trends of corruption, prediction accuracy might be lower as our algorithm is trained on pre-
intervention data (the law came into effect only in 2013).  However, the results for 2013 and 2014 are very similar 
to those obtained for 2012. 
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[Table 6] 

6. Open issues and conclusions 

We have documented that the gains from using ML predictive tools are substantial. It is worth 

noting that these gains might well represent a conservative estimate. First, we chose our ML 

algorithm on the basis of its transparency. More complex - but admittedly less transparent - 

algorithms might provide better performances. We tried with random forest, but we did not get 

significant improvements over the accuracy of the classification trees.15 However, we did not 

try more complex ML algorithms, such as support vector machine or neural networks. Another 

important aspect refers to the number of features that we have used to train the algorithms. We 

have a long list of variables, but still quite restricted when compared with the amount of 

information (Big Data) that in other ML applications have been exploited. Indeed, the relatively 

low number of predictors and observations might be the main reason why the performance of 

the classification tree is competitive with that of more sophisticated techniques such as the 

random forest. With more features, we could have obtained an even higher accuracy. One 

aspect is that we have only a limited subset of the information available to police departments. 

For instance, having a longer time series could have allowed exploiting additional features of 

time-varying nature. Additionally, more detailed georeferenced data could permit intra-

municipality predictions. Note that the availability of information at the local level is going to 

increase over time: future predictions are going to be more precise than the ones we have 

provided in this paper. 

When compared with the law 190/2012, we have been able to improve predictive sensitivity 

(y=1) at the cost of losing accuracy in specificity (y=0). Given the high socio-economic costs of 

corruption, the benefits related to higher sensitivity seem to be warranted.  However, the pool 

of municipality predicted as potentially ‘corrupted’ is higher under ML than the law cutoff 

(according to Table 5, in 2012, this pool includes 493 municipalities versus 213 of them). This 

means that if ML predictions are taken as to select places where to implement stricter anti-

corruption rules, as an alternative to the cutoff envisaged by law 190, then the overall 

regulatory costs would, in principle, rise. However, in the current circumstances, it is difficult 

to imagine that a legislative act could delegate the identification of municipalities to an 

algorithm. More realistically, ML predictions could be used to refine the existing regulation, 

ruling out municipalities above the 15,000 inhabitants that are not predicted to be corruption-

 
15 Results are available upon request. 



14 
 

prone. Under these circumstances, overall regulatory costs will be lower. For instance, in the 

year 2012, 10.8% and 10.3% of cities with more than 15,000 inhabitants, respectively, for the 

outcomes in levels and variations, can be sheltered from the new rules notwithstanding they 

are above the demographic threshold. 

As for the outcomes, the ones we have proposed are admittedly the simplest ones when it 

comes to figuring out the preferences of the policymaker. They can be usefully combined. For 

instance, a policymaker might be particularly worried about places where both dummies 

(levels and variations) take the value of one. On the other hand, it could be that repression 

efforts have to be concentrated at the early stages of a corruption escalation, so the policymaker 

might care more about places that move from zero to positive corruption. Again, the authorities 

might choose to focus on the municipalities in which the number of corruption episodes reaches 

a given threshold. These, and other similar cases, are easily accommodated in our framework. 

One aspect on which the literature on ML has concentrated a lot refers to bias. Suppose that our 

data are contaminated because corruption episodes are more likely to be reported in certain 

communities than others. Think, for instance, of a social capital story (Putnam, 1993). If this is 

the case, then the ML prediction is likely to be biased as well, and the municipalities with higher 

endowments of social capital are most likely to be classified as y=1, ceteris paribus. 

Contamination issues have no sensible solution. If the y=0 are false negatives, because in those 

municipalities there are white-collar crimes not recorded in the SDI, there is little to do. 

However, our post-SMOTE sample (the one on which the prediction is based) is likely to be less 

exposed to contamination, compared to the original sample. What SMOTE does is an 

undersampling of the most numerous class, in our case the zeros, by excluding those 

observations which are less similar – as measured by comparing observable features - to the 

other class, the ones. Therefore, the post-SMOTE sample is likely to be featured by high 

similarity in observables and – following the Altonji et al. (2005)’s argument – in unobservables 

as well. 

We have picked up classification trees purposely to minimize transparency issues. The trees 

described in Figures 3 and 4 can be easily communicated to the public. Obviously, it is easier to 

understand one single threshold than a bunch of them, sequentially linked. However, this cost 

might be considered not that large especially because the prediction based on the trees 

increases effectiveness in finding out ‘corrupted’ municipalities and thus communicated as 

necessary to serve a public aim (in this respect, the population threshold implied by the law 
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does not have such a sound foundation). Another aspect refers to the amount of information 

that the policymaker needs. Algorithm predictive power increases with more information. 

However, we have shown that, even with a not impressive list of features, gains are substantial. 

Concerning information requirements, also note that the trees have the advantage of using very 

few variables once its structure has been defined, which is after the phase of training and testing 

(Section 3). In our case, predictions need only 3 (Figure 3) or 6 (Figure 4) variables. This is not 

the case for more complex algorithms, which require the whole information set at any step. 

Finally, and still related to transparency, ML methods highlight the targeting that an authority 

interested in fighting corruption should adopt. Therefore, they can also provide information on 

whether other objectives, such as omitted payoffs (Kleinberg et al., 2018), have a role in this 

important kind of public decisions. For instance, corrupt politicians might conspire to have 

police investigations far from some places. Having the ML prediction map, which can be easily 

compared with that of the actual police efforts, might shed light on that. 

In conclusion, our findings suggest that the combination of new data and data-driven machine 

learning techniques might provide innovative and impartial tools to help the policymaker 

improve ex-ante targeting and regulatory design, an exceptionally delicate and critical task in 

the fight to white-collar delinquencies.  
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Table 1 

Descriptive statistics – Selected features 

 

Variable Year Mean Var sd Count 

Population 2011 7472.740 1.637e+09 40457.589 7794 

Number of foreign people per 1000 inhabitants 2011 58.496 1776.420 42.148 7794 

Average household size 2011 2.359 0.070 0.265 7794 

Share of real estate ownership among 

households  

2011 76.810 44.517 6.672 7794 

Mean surface of inhabited buildings (sq. m.) 2011 103.235 171.943 13.113 7794 

Share of buildings into disuse 2011 1.639 3.960 1.990 7794 

Share of young people with a university degree 2011 18.873 56.436 7.512 7794 

Share of adult people with secondary education 2011 38.219 42.002 6.481 7794 

Male unemployment rate 2011 8.357 32.100 5.666 7794 

Female unemployment rate 2011 12.940 65.844 8.114 7794 

Unemployment rate 2011 10.184 40.106 6.333 7794 

Youth unemployment rate 2011 29.357 232.692 15.254 7782 

Daily mobility outside the municipality                        

for study or work  

(share of the working-age population) 

2011 35.067 160.360 12.663 7794 

Daily student mobility outside the municipality                   

(share of the population that moves daily 

outside the municipality) 

 
2011 

 
113.228 

 
19856.800 

 
140.914 

 
7071 

Vulnerability index 2011 98.770 2.701 1.644 7794 

Place in vulnerability index ranking 2011 4036.333 5454224.210 2335.428 7794 

Share of households in potential                   

economic hardships 

2011 2.041 3.561 1.887 7794 

Number of police stations within 50 km from the 

municipality centroid 

2011 10.414 99.024 9.951 7794 

Share of foreign people from Eastern Europe 2011 0.424 0.054 0.233 7794 

Share of foreign people from Northern Africa 2011 0.158 0.025 0.157 7794 

Share of foreign people from Southern Europe 2011 0.144 0.022 0.148 7794 

Average temperature (°C) 2011 13.252 10.025 3.166 7794 

Total precipitation (mm) 2011 859.429 96898.239 311.285 7794 
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Table 2 

Descriptive statistics – White-collar crime variables  

Variable Year Mean Var sd Obs 

WC crime rate 2008 0.0457 0.0436 0.209 7794 

 2009 0.0499 0.0474 0.218 7794 

 2010 0.0533 0.0504 0.225 7794 

 2011 0.113 0.100 0.317 7794 

 2012 0.0966 0.0873 0.295 7794 

 2013 0.0920 0.0835 0.289 7794 

 2014 0.0958 0.0867 0.294 7794 

∆ WC crime rate 2008 0.0368 0.0355 0.188 7794 

 2009 0.0331 0.0320 0.179 7794 

 2010 0.0379 0.0364 0.191 7794 

 2011 0.0908 0.0826 0.287 7794 

 2012 0.0710 0.0659 0.257 7794 

 2013 0.0429 0.0410 0.203 7794 

 2014 0.0667 0.0623 0.250 7794 

Notes: WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of 
white-collar crimes per 1,000 inhabitants) is positive and 0 otherwise. ∆ WC crime rate is a binary 
variable taking value 1 if the white-collar crime rate (i.e., the number of white-collar crimes per 1,000 
inhabitants) has increased with respect to the previous year, and 0 otherwise. 
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Table 3 

Post-SMOTE decision tree performance on the testing sample  

(variable: WC crime rate) 

 

          Real status 

Year: 2012 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 2024 60 2084 

WC crime rate = 1 320 173 493 

Total 2344 233 2577 

 Correctly predicted 86.4 % 74.3 % 85.3 % 

Year: 2013 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 2018 66 2084 

WC crime rate = 1 320 173 493 

Total 2338 239 2577 

 Correctly predicted 86.3 % 72.4 % 85 % 

Year: 2014 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 2013 71 2084 

WC crime rate = 1 309 184 493 

Total 2322 255 2577 

 Correctly predicted 86.7 % 72.2 % 85.3 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the rebalanced training 
subsample. WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-
collar crimes per 1,000 inhabitants) is positive and 0 otherwise. 
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Table 4 

Post-SMOTE decision tree performance on the testing sample  

(variable: ∆ WC crime rate) 

 

 Real status 

Year: 2012 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate =0 1831 36 1867 

∆ WC crime rate = 1 566 144 710 

Total 2397 180 2577 

 Correctly predicted 76.4 % 80 % 76.6 % 

Year: 2013 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate =0 1838 29 1867 

∆ WC crime rate = 1 627 83 710 

Total 2465 112 2577 

 Correctly predicted 74.6 % 74.1 % 74.5 % 

Year: 2014 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate = 0 1830 37 1867 

∆ WC crime rate = 1 567 143 710 

Total 2397 180 2577 

 Correctly predicted 76.4 % 79.4 % 76.6 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the rebalanced training 
subsample. ∆ WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of 
white-collar crimes per 1,000 inhabitants) has increased with respect to the previous year, and 0 otherwise. 
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Table 5 

Anti-corruption threshold vs decision tree rule performances  

(testing sample; variable: WC crime rate) 

 

        Real status 

Year: 2012 WC crime rate = 0 WC crime rate = 1 Total 

Predicted status Correctly predicted 86.4 % 74.3 % 85.3 % 

Anti-corruption 

threshold  
Correctly targeted 95.8 % 48.9 % 91.5 % 

 Difference −  9.4 % + 25.4 % − 6.2 % 

Year: 2013 WC crime rate = 0 WC crime rate = 1 Total 

Predicted status Correctly predicted 86.3 % 72.4 % 85 % 

Anti-corruption 

threshold  
Correctly targeted 95.6 % 46 % 91 % 

 Difference − 9.3 % + 26.4 % − 6 % 

Year: 2014 WC crime rate = 0 WC crime rate = 1 Total 

Predicted status Correctly predicted 86.7 % 72.2 % 85.3 % 

Anti-corruption 

threshold  
Correctly targeted 95.4 % 41.6 % 90.1 % 

 Difference −  8.7 % + 30.6 % − 4.8 % 

Years: 2012 - 2014 WC crime rate = 0 WC crime rate = 1 Total 

Overall average difference in performance −  9.1 % + 27.5 % − 5.7 % 

Notes: The comparison is on the 2577 municipalities belonging to the testing subsample. WC crime rate is a binary 
variable taking value 1 if the white-collar crime rate (i.e., the number of white-collar crimes per 1,000 inhabitants) is 
positive and 0 otherwise. 
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Table 6 

Anti-corruption threshold vs decision tree rule performances  

(testing sample; variable: ∆ WC crime rate) 

 

        Real status 

Year: 2012 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

Predicted status Correctly predicted 76.4 % 80 % 76.6 % 

Anti-corruption 

threshold  
Correctly targeted 94.5 % 45.6 % 91.1 % 

 Difference −  18.1 % + 34.4 % − 14.5 % 

Year: 2013 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

Predicted status Correctly predicted 74.6 % 74.1 % 74.5 % 

Anti-corruption 

threshold  
Correctly targeted 92.3 % 21.4 % 89.3 % 

 Difference − 17.7 % + 52.7 % − 14.8 % 

Year: 2014 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

Predicted status Correctly predicted 76.4 % 79.4 % 76.6 % 

Anti-corruption 

threshold  
Correctly targeted 93.8 % 35.6 % 89.7 % 

 Difference −  17.4 % + 43.8 % − 13.1 % 

Years: 2012 - 2014 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

Overall average difference in performance −  17.7 % + 43.6 % − 14.1 % 

Notes: The comparison is on the 2577 municipalities belonging to the testing subsample. ∆ WC crime rate is a binary 
variable taking value 1 if the white-collar crime rate (i.e., the number of white-collar crimes per 1,000 inhabitants) has 
increased with respect to the previous year, and 0 otherwise. 
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Figure 1 

WC crime rate across Italian municipalities – 2012 

 

Centre and North South and Islands 

  
Notes: WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-
collar crimes per 1,000 inhabitants) is positive and 0 otherwise. 
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Figure 2 

∆WC crime rate across Italian municipalities – 2012 

 

Centre and North South and Islands 

  
Notes: ∆ WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-
collar crimes per 1,000 inhabitants) has increased with respect to the previous year, and 0 otherwise. 
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Figure 3 

 Classification tree for WC Crime Rate – Post-SMOTE data 

 

Legend 
L1.rate: 

p1: 
m2 

Lagged (2011) WC crime rate 
Population 

Daily mobility outside the municipality for study or work 
(share of the working-age population) 
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Figure 4 

Classification tree for ∆ WC Crime Rate – Post-SMOTE data 

Legend 
p1: 
m2: 

 
a2: 
m4: 

 
v6: 
a9: 

Population 
Daily mobility outside the municipality for study or work 

(share of the working-age population) 
Mean surface of inhabited buildings (square meters) 

Daily student mobility outside the municipality  
(share of the population that moves daily outside the municipality) 

Share of households in potential economic hardships (%) 
Share of buildings into disuse (%) 
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Appendix 

 

Table A.1 

The Accuracy Paradox: pre-SMOTE decision tree performance on the testing sample  

(variable: WC crime rate; year: 2012) 

 

 
              Real status 

WC crime rate = 0 WC crime rate = 1 Total 

Predicted 

status 

WC crime rate = 0 2311 159 2470 

WC crime rate = 1 33 74 107 

Total 2344 233 2577 

 Correctly predicted 98.6 % 31.2 % 92.6 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the original imbalanced 
training subsample. WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number 
of white-collar crimes per 1,000 inhabitants) is positive and 0 otherwise. 
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Table A.2 

The Accuracy Paradox: pre-SMOTE decision tree performance on the testing sample  

(variable: ∆ WC crime rate; year: 2012) 

 

 
                Real status 

∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

Predicted 

status 

∆ WC crime rate = 0 2397 180 2577 

∆ WC crime rate = 1 0 0 0 

Total 2397 180 2577 

 Correctly predicted 100 % 0 % 93 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the original imbalanced 
training subsample. ∆ WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the 
number of white-collar crimes per 1,000 inhabitants) has increased with respect to the previous year, and 0 
otherwise. 
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Table A.3 

Post-SMOTE Logit performance on the testing sample  

(variable: WC crime rate) 

 

          Real status 

Year: 2012 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1972 65 2037 

WC crime rate = 1 372 168 540 

Total 2344 233 2577 

 Correctly predicted 84.1 % 72.1 % 83 % 

Year: 2013 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1972 65 2037 

WC crime rate = 1 366 174 540 

Total 2338 239 2577 

 Correctly predicted 84.4 % 72.8 % 83.3 % 

Year: 2014 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1962 75 2037 

WC crime rate = 1 360 180 540 

Total 2322 255 2577 

 Correctly predicted 84.5 % 70.6 % 83.1 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the rebalanced training 
subsample. WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-
collar crimes per 1,000 inhabitants) is positive and 0 otherwise. In order to allow comparability with the decision 
tree, missing values in the testing sample have been imputed using the rfImpute package in R. 

 



34 

Table A.4 

Post-SMOTE Logit performance on the testing sample  

(variable: ∆ WC crime rate) 

 

 Real status 

Year: 2012 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate =0 1906 61 1967 

∆ WC crime rate = 1 491 119 610 

Total 2397 180 2577 

 Correctly predicted 79.5 % 66.1 % 78.6 % 

Year: 2013 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate =0 1919 48 1967 

∆ WC crime rate = 1 546 64 610 

Total 2465 112 2577 

 Correctly predicted 77.9 % 57.1 % 77 % 

Year: 2014 ∆ WC crime rate = 0 ∆ WC crime rate = 1 Total 

 

Predicted 

status 

∆ WC crime rate = 0 1896 71 1967 

∆ WC crime rate = 1 501 109 610 

Total 2397 180 2577 

 Correctly predicted 79.1 % 60.6 % 77.8 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the rebalanced training 
subsample. ∆ WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of 
white-collar crimes per 1,000 inhabitants) has increased with respect to the previous year, and 0 otherwise. In 
order to allow comparability with the decision tree, missing values in the testing sample have been imputed using 
the rfImpute package in R. 
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Table A.5 

Post-SMOTE Decision tree performance on the testing sample  

without lagged crime predictors 

(variable: WC crime rate) 

 

          Real status 

Year: 2012 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1886 55 1941 

WC crime rate = 1 458 178 636 

Total 2344 233 2577 

 Correctly predicted 80.5 % 76.4 % 80.1 % 

Year: 2013 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1893 48 1941 

WC crime rate = 1 445 191 636 

Total 2338 239 2577 

 Correctly predicted 81 % 79.9 % 80.9 % 

Year: 2014 WC crime rate = 0 WC crime rate = 1 Total 

 

Predicted 

status 

WC crime rate = 0 1886 55 1941 

WC crime rate = 1 436 200 636 

Total 2322 255 2577 

 Correctly predicted 81.2 % 78.4 % 81 % 

Notes: Out-of-sample estimation on the testing subsample, using the model trained on the rebalanced training 
subsample. WC crime rate is a binary variable taking value 1 if the white-collar crime rate (i.e., the number of white-
collar crimes per 1,000 inhabitants) is positive and 0 otherwise. 
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Figure A.1 

Classification tree for WC crime rate – Pre-SMOTE data 

Legend 
  p1: 
m2 

Population 
Daily mobility outside the municipality for study or work 

(share of the working-age population) 

 


