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Abstract

We present empirical evidence supporting a non-monotonic relationship between
employment and productivity growth, using data from the US. We then study the the-
oretical implications of such U-shaped relation in a “Keynesian Growth” framework
with heterogeneous innovation, which reconciles the market-size and opportunity-
cost views of technological change. We show that a U-shaped growth equation can ra-
tionalize the existence of locally determinate equilibria with unemployment and low
growth in a liquidity trap. We also show that growth policy incentivising exploratory
research activities leading to radical innovation can both prevent the exposure to un-
employment equilibria and help the economy escape them.
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sertation at the Université Libre de Bruxelles and Luiss University. We thank Pierpaolo Benigno, Edouard
Challe, Luca Fornaro, Paolo Giordani, Robert Kollmann, Alessandra Perri, Marco Pinchetti, Giorgio Prim-
iceri, Giuseppe Ragusa and Pietro Reichlin for helpful comments and suggestions. S. Nisticò gratefully
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1 Introduction

Schumpeter (1934) writes that recessions are times of creative destruction, during which
new products and techniques are improved or developed and displace the old ones (Barro
and Sala-i Martin, 2004). This view of counter-cyclical innovation found support in the
”opportunity cost” theory of innovation, according to which the foregone profits of in-
vesting capital or labor resources in technological or managerial improvements is lower
during downturns.1 This view of innovative activity has been challenged by some empiri-
cal works, which instead tend to favor the alternative ”market size” theory of innovation.2

The latter states that product demand is the main driver of research and development ef-
forts and, as a result, technological progress is procyclical. This theory is at the core of
most modern endogenous-growth models, which therefore feature a procyclical innova-
tion engine.

This paper reconciles these views within a unified theory of technological progress.
We start with an empirical analysis of the growth equation, i.e. the relation between

employment and productivity drift that summarizes the supply-side of growth theory.
The latter is implied to be positive under the ”market size” and negative under the ”op-
portunity cost” theories of innovation. We focus on the US economy during the period
1948-2019 and identify the growth-equation controlling for supply shocks, building on
the approach first engineered for identification of the Phillips Curve (McLeay and Ten-
reyro, 2020). Our results show that neither a positive nor a negative growth equation is
clearly supported by the data. We then allow the data to be free to speak, imposing a more
flexible structural relation in the form of a threshold model, and let it choose discontinu-
ity points in the employment-growth link. The model identifies the 20th percentile of the
employment historical distribution as a significant nonlinearity point: when the economy
operates in normal times and shocks are mild, employment and productivity move in the
same direction, while when shocks push the economy below the identified threshold, the
growth equation turns upside down. Building on that intuition, we then show that a
U-shaped growth equation is a better characterization of the employment-growth link.

What can explain a U-shaped growth equation? The answer is in both the market size
and opportunity cost theories, once allowing for heterogeneous innovation. We consider
an economy in which technological progress is the result of interaction between radi-

1Aghion and Saint-Paul (1991), Aghion and Saint-Paul (1998b), Gali and Hammour (1992), Cooper and
Haltiwanger (1993), Caballero and Hammour (1994), Hall (1991), Saint-Paul (1997), DeLong (1990), Canton
and Uhlig (1999) and King and Robson (1989).

2See, among others, Griliches (1990) and Comin and Gertler (2006).
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cal/exploratory and incremental/exploitative innovation.3 Radical innovation includes
types of inventions that create new fringes, new areas of knowledge, are more risk taking
and produce higher expected payoffs. Incremental innovation instead deals with refine-
ments of existing products, and thus generates lower expected profits. The opportunity
cost of venturing into exploratory research—in terms of foregone profits that could have
been achieved with incremental technological refinements—is lower during recessions.
As a result, this type of activity will be countercyclical. Conversely, during an expansion,
exploitation efforts become more appealing because the associated expected profits are
higher (market size effect), hence incremental innovation will be procyclical. To keep the
model tractable, we assume entrepreneurs are alike in their capability of performing in-
cremental innovation, while have heterogeneous skills in engaging in radical innovation.
Free-entry into research partitions entrepreneurs between radical (high ability) and in-
cremental (low ability) innovators, so that both types of activities are undertaken at each
point in time. The threshold is driven by the business cycle, with the share of radical and
incremental innovators time varying. Given this setup, the growth equation summariz-
ing the supply-side of the economy is U-shaped, with one margin dominating over the
other depending on the business cycle: when shocks are small, the incremental margin
dominates and growth is driven by the market size effect; when recessions are deep in-
stead, the opportunity cost of conducting exploration activities is low, more and more
radical innovations are created, and growth increases in unemployment. This mecha-
nism is consistent with novel empirical evidence showing that firms shit toward explo-
ration during contractions and exploitation during expansions, using nuanced measures
of patent characteristics (Manso et al., 2023). Whether or not the opportunity cost margin
acts as a built-in economic resilience mechanism depends on deep parameters and on the
aggregate demand block of the economy, which we describe next.

We assume a Keynesian aggregate demand block: wages are sticky, the central bank
follows a Taylor rule taking into account the zero lower bound and households face id-
iosyncratic unemployment risk, so that involuntary unemployment can arise and mone-
tary policy is meaningful.

The interaction between the U-shaped growth equation and Keynesian aggregate de-
mand gives rise to several implications.

First, multiple equilibria are possible. As long as shocks are small and the central bank
is not constrained by the zero lower bound, the economy finds itself in a full-employment

3Henceforth, we will use as synonyms the terms radical, exploratory and horizontal to refer to inno-
vation that leads to the creation of novel varieties, and incremental, exploitative and vertical to refer to
innovation improving on existing varieties.
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equilibrium: output and employment are at potential and growth is strong. When shocks
are harsher and the central bank is constrained by the zero lower bound, a liquidity trap
arises and two possible equilibria are admissible: the first one is a ”stagnation trap”, as
in the seminal work of Benigno and Fornaro (2018) on which we build, with low-growth
and low-employment; the second one is a ”jobless growth” trap, with high-growth and
low-employment. Thus our model can rationalize the persistent slumps of the Euro Area
and Japan (Benigno and Fornaro, 2018) as well as the fast, but jobless, recovery of the US
(Schmitt-Grohe and Uribe, 2017) in the post global financial crisis period.

Second, we show that the full employment and jobless growth equilibria are locally
determinate, while the stagnation trap equilibrium—as in Benigno and Fornaro (2018)—is
locally indeterminate. This has important implications. Structural shocks are the equilib-
rium selection device: deep recessions will fall in the basin of attraction of the jobless
growth trap, while mild recessions into the one of full employment. Only sunspot shocks
and animal spirits could yield the economy into a stagnation trap. Also, depending on
deep parameters, the two ”bad” equilibria could actually almost overlap: in that scenario
we would get essentially two stagnation traps, one of which is locally determinate. This
helps in better understanding the persistent slumps and liquidity traps observed in the
Euro Area and Japan (stagnation traps), which instead would have required a substantial
coordination in expectations to materialize.

Third, if the radical innovation margin is strong enough, it could prevent the oc-
curence of bad equilibria altogether. However, if they occur, they are generally harsher
(deeper and determinate) than in the case of a linear, upward-sloping, growth equation.
This naturally leads to the discussion of policy implications, which is our fourth result.
As far as monetary policy is concerned, we show that countercyclical radical innovation
gives more room to dovish reaction of the central bank to employment deviations be-
cause the link between growth and employment on the positively sloped portion of the
growth-equation is milder. In terms of industrial policies instead, a subsidy to exploratory
research activities can prevent the formation of bad equilibria or steer the economy away
from them.

Related Literature. Our work is related to several strands of the economic literature.
We relate to works that provide a unified study of business-cycles and growth (Stadler,
1986, 1990; Stiglitz, 1993; Martin and Rogers, 1997; Fatàs, 2000; Comin and Gertler, 2006;
Anzoategui et al., 2019; Bianchi et al., 2019; Garga and Singh, 2020; Benigno and Fornaro,
2018; Comin, 2009; Schmitt-Grohe and Uribe, 2017; Eggertsson et al., 2019; D’Amico,
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2024)4. These works have either a market-size or an opportunity-cost growth engine in
the background. We contribute to this literature by providing a framework in which het-
erogeneous innovation allows both engines to be at work, with the business cycle driving
which one prevails at the aggregate level.

We contribute to the Keynesian endogenous growth literature (Benigno and Fornaro,
2018, Garga and Singh, 2020, Queralto, 2020, Anzoategui et al., 2019, Bianchi et al., 2019,
Guerron-Quintana and Jinnai, 2019, Moran and Queralto, 2018), which introduces en-
dogenous growth in business cycle models with nominal rigidities. Among these, we
are most closely related to Benigno and Fornaro (2018) who show that an upward sloped
growth equation can give rise to stagnation traps once interacted with a Keynesian aggre-
gate demand block. However, their stagnation-trap equilibrium is locally indeterminate,
whereby the transition from full employment to the unemployment steady state requires
animal spirits and an appropriate coordination of private-sector expectations. Moreover,
being unstable, small structural shocks can in general drive the system away from the
trap. We complement Benigno and Fornaro (2018) seminal work in one key respect: we
allow for both incremental and radical innovation, as opposed to only incremental. As a
result, in line with the empirical evidence we provide, our growth equation is U-shaped,
allowing for a third steady-state equilibrium to arise, one that is both associated to high
unemployment and is locally determinate. In other words, our framework makes it possi-
ble for stable stagnation traps to arise, where the economy can end because of fundamental
factors unrelated to animal spirits. This allows us to rationalize both the persistent slumps
experienced in the Euro Area and Japan as well as the jobless-growth recovery of the US.

We are also related to Aghion and Saint-Paul (1991), Aghion and Saint-Paul (1998b),
Gali and Hammour (1992), Cooper and Haltiwanger (1993), Caballero and Hammour
(1994), Hall (1991), Saint-Paul (1997), DeLong (1990), Canton and Uhlig (1999) and King
and Robson (1989) whom build models in which recessions have positive, cleansing ef-
fects, mainly trough an opportunity cost (or intertemporal substitution) effect. These
works find empirical support in Davis and Haltiwanger (1992), Blanchard et al. (1990),
Aghion and Saint-Paul (1998a), Bean (1990), Burnside et al. (1993), Basu and Fernald
(1995), Dunne et al. (1996), Nickell et al. (2001) and Fatàs (2000) and more recently in
Aghion et al. (2010; 2012), Fernald and Wang (2016) and Haltiwanger et al. (2021). Nonethe-
less, this empirical literature is not clear-cut on whether firms tend to innovate more or
less during recession periods and it is therefore not possible to reject one theory in favor
of the other. We complement this literature taking a different standpoint. Instead of de-
bating on whether firms’ innovation is pro- or counter-cyclical, we allow our framework

4For a complete historical review of this literature the reader is referred to Cerra et al. (2020).
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to encompass both, with the understanding that pro- or counter-cyclicality will be driven
by the business cycle. Moreover, our setup can shed some light on why the cleansing
effects of recessions have troubles leaving visible effects on GDP growth: the presence of
the zero lower bound on monetary policy can in fact make it more difficult to exploit the
counter-cyclical side of innovation.

We are also closely related to Manso et al. (2023), who build on the intuition that ex-
perimentation with new ideas is the basis for innovation (Arrow, 1969) and that there is
a clear distinction between exploration and exploitation (March, 1991). Using the distri-
bution of number of patents per technology class and firm and a measure of similarity
for the period 1958-2008, they show that firms pursue exploration during downturns and
exploitation during booms. The opportunity cost of venturing into exploratory research
leading to radical innovation—in terms of foregone expected profits related to incremen-
tal innovation—is lower during recessions. We complement this empirical evidence pro-
viding aggregate results for the link between productivity growth and employment over
the business cycle. Also, in our theoretical framework we allow entrepreneurs to endoge-
nously determine whether to engage in radical or incremental innovation, and show that
this yields a U-shaped growth equation. Importantly, while Manso et al. (2023) contem-
plate the idea that countercyclical innovation can act as a built-in resilience mechanism
that can attenuate the welfare losses associated with recessions, we show that this is not
necessarily the case, as it depends on the particular characteristics of the R&D sector, the
degree of wage rigidity, and the monetary policy stance.

Finally, we are related to the classics of endogenous growth (Segerstrom et al., 1990;
Grossman and Helpman, 1991; Romer, 1990b; Aghion and Howitt, 1992) as we extend
their framework introducing heterogeneous innovation, monetary policy and nominal
rigidities.

Structure. The paper is organized as follows: Section 2 discusses empirical evidence in
support of a U-shaped growth equation, Section 3 crafts a Keynesian growth model with
heterogeneous innovation, Section 4 discusses the policy implications of our analysis and
Section 5 concludes.

2 Empirical evidence

In the endogenous growth theoretical literature (see Barro and Sala-i Martin, 1997) a key
relation links employment with productivity growth, describing the supply-side of the
economy: the growth equation. This relation is typically implied to be monotonic and
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upward-sloping. The mechanism behind that is common to both expanding varieties
models (à la Romer, 1990b) as well as to creative destruction ones (à la Aghion and
Howitt, 1992): innovators invest in R&D to discover new varieties or better qualities, re-
spectively in the expanding varieties or creative destruction frameworks, so as to acquire
future expected monopolists profits related to the patented innovation. Since expected
profits are an increasing function of employment (what in the literature is known as “mar-
ket size effect”), this pins down a positive relationship between the level of employment
and innovation intensity and, importantly, productivity growth. In endogenous growth
models where the households side is defined in real terms, and thus with no monetary
policy, the growth equation, together with an aggregate demand equation (i.e. the Euler
equation of the household) determines the equilibrium level of growth and employment.

More recently, Benigno and Fornaro (2018) show that a supply-side of this kind, once
interacting with a New Keynesian demand-side that explicitly accounts for an effective
lower-bound on nominal interest rates, gives rise to multiple equilibria, one of which
features low levels of employment and low productivity growth. In particular, in the
specification of Benigno and Fornaro (2018), the optimal innovation intensity combined
with the households’ stochastic discount factor yields

(gt+1 − 1)
(

1 − βEt

[(
ct

ct+1

)σ

g−σ
t+1χγϖLt+1

])
= 0, (2.1)

where gt+1 is the (gross) productivity growth rate (between period t and t + 1), ct is con-
sumption normalized by the productivity index, Lt+1 is employment, σ is the inverse of
the elasticity of intertemporal substitution and χ, γ and ϖ are positive parameters. Equa-
tion (2.1) determines the optimal R&D effort by entrepreneurs and implies a monotonic
upward-sloping relation between innovation-led growth gt+1 and employment Lt+1.

An alternative link between growth and employment explored in the literature is
indeed of the opposite sign, compared to standard growth equations. The ”opportu-
nity cost/intertemporal substitution” theory of innovation (Aghion and Saint-Paul, 1991,
Aghion and Saint-Paul, 1998b, Gali and Hammour, 1992, Cooper and Haltiwanger, 1993,
Caballero and Hammour, 1994, Hall, 1991, Saint-Paul, 1997, DeLong, 1990, Canton and
Uhlig, 1999 and King and Robson, 1989) models recessions as good times to carry out
innovation, for the opportunity cost drops and the expected value increases, in line with
empirical evidence.5 The main idea is that the foregone profits for investing resources in

5Davis and Haltiwanger (1992), Blanchard et al. (1990), Aghion and Saint-Paul (1998a), Bean (1990),
Burnside et al. (1993), Basu and Fernald (1995), Dunne et al. (1996),Nickell et al. (2001) and Fatàs (2000) and
more recently in Aghion et al. (2010; 2012) and Fernald and Wang (2016)
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technological improvements or in managerial reorganizations are lower during depres-
sion phases, and the more so when recessions are deeper (Aghion and Saint-Paul, 1991).
The complementary entrepreneurship literature emphasizes the ”cleansing” and ”sully-
ing” effects that may be triggered during recessions (Haltiwanger et al., 2021). Taking
together both the ”market size effect” and the ”opportunity cost/intertemporal substi-
tution/cleansing and sullying” theories of innovation suggests that the growth equation
may in fact be non-monotonic, with a slope driven by the business-cycle. This lays the
foundations of our identification strategy which we will turn next.

2.1 Econometric approach

In this section we discuss our approach to identify and estimate the growth equation for
the US economy. We will focus on the period 1984-2019.

2.1.1 Identification

Equilibria in an endogenous-growth model can be characterized using two loci in the
employment-growth space: the growth equation, describing the supply side of the econ-
omy, and the aggregate-demand equation, describing the relation between growth and
current aggregate demand. As noted in Lucas (1976) and more recently revived in McLeay
and Tenreyro (2020), in the data we only observe intersection points of these two curves
(or, more in general, equilibrium points), and supply and demand shocks might blur the
identification of either curve.

The period we are focusing on had been mostly characterized by demand shocks
(Smets and Wouters, 2007). As such, the latter move the aggregate demand equation
and, if supply shocks are adequately controlled for, time variation in the data would then
depict the growth equation we are interested in, allowing identification.

Given the massive structural change the US economy went through during the period
under focus, especially in relation to how innovation is conceived and deployed, we don’t
expect the growth equation to have the same slope throughout. Rather, the link between
employment and productivity growth should, if any, reflect that change. We will thus
firstly naively estimate a linear model on the whole 1984-2019 period, and show that in-
deed the standard positively-sloped linear growth equation is not supported by the data.
We will then identify a nonlinearity in the growth equation via threshold regression. To
take this linearity into account, we will fit piecewise linear and quadratic models. Our
results suggest that a more accurate representation of the link between employment and
growth is given by a second order polynomial. The data identify a standard positive as-
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sociation between growth and employment during ”normal” times, i.e. periods in which
economic contractions are not particularly deep. Instead, when downturns provoke deep
recessions, the data identify a downwardly sloped growth equation.

2.1.2 Model specification

Our approach is to estimate a linear approximation of equation (2.1) which involves a
simple time-series regression of the form

gt = α + βLt + γ′Xt + ϵt (2.2)

where gt is the (log) productivity growth rate, Lt the employment rate and Xt is a vector
of controls. Our aim is not to explain productivity growth; rather, it is to let the data
characterize the link between productivity growth and employment that describes the
supply-side of the economy. To this end, our vector of controls Xt includes just the growth
rate of consumption, as in the starting equation (2.1) and a proxy for supply shocks. We
follow the recent literature on the estimation of the Phillips curve (Benigno and Eggerts-
son, 2023) and rely on ”headline shocks” as indicators of supply shocks. In particular,
we take the first principal component of three series: (i) the difference between headline
and core CPI inflation; (ii) the difference between headline and personal consumption
expenditures (PCE) price index inflation; (iii) the difference between the change in the
import prices and the GDP deflator6. Our data are quarterly, spanning from 1984Q1 until
2019Q4, and described in the Appendix B.1.

Table 1: The U-shaped Growth Equation: estimation results

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.013 0.016 0.019 -0.018 -0.295∗∗∗ -5.783∗∗∗

(0.019) (0.037) (0.033) (0.023) (0.098) (1.916)
Empl*Threshold 0.345∗∗∗

(0.102)
Empl2 3.006∗∗∗

(0.998)
R2 0.053 0.098 0.022 0.059 0.171 0.111
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.

6The individual time series together with the first principal component are plotted in Figure 5 in the
Appendix C
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Estimating Equation (2.2) on the whole time period yields a flat and not significant
relationship between employment and productivity growth (Table 1, first column), with
an overall poor fit (.05). We estimate model (2.2) in three alternative subsamples: (i) one
spanning from 1984 til 2000, (ii) one for the Great Moderation period (1984-2007) and (iii)
one for the last two decades (2000-2019). Results are reported in Table 1. None of these
regressions identifies a significant growth equation in the data.

Threshold regression. Why is such a well known and key equation not supported by
the data? Our hypothesis is that indeed, in the data there is evidence for both the ”market
size” (Romer, 1990b, Aghion and Howitt, 1992, etc.) and ”cleansing” (Aghion and Saint-
Paul, 1998b, Haltiwanger et al., 2021, etc.) effects of recessions at the same time, blurring
the identification of the growth equation.

To test this hypothesis, we employ a threshold regression of the type

gt = α +
(

β1Lt + γ′
1Xt
)
1Lt≤L̄ +

(
β2Lt + γ′

2Xt
)
1Lt>L̄ + ϵt, (2.3)

where 1Lt≤L̄ is an indicator function taking value 1 when employment Lt is below a cer-
tain threshold value L̄, Xt is a vector of controls. The fact that we chose a very limited set
of controls in estimating Model (2.2), allows us to keep the same vector for Model (2.3)
without incurring in sample size limitations. The employment threshold L̄ is our variable
of interest, and it is estimated minimizing the Bayesian information criterion. In particu-
lar, the model tests for a series of candidate thresholds and for each candidate threshold,
the data are split into two regions and linear regressions are fitted within each subregion.
The model selects the optimal threshold that provides the best fit to the data, as indicated
by the minimized Bayesian information criterion.

By using this approach, the threshold regression model endogenously determines the
nonlinearity point, ensuring that the split is data-driven and not arbitrary. The found
threshold signals a change in the structural relationship between growth and employment
over the employment domain. Results are reported in Table 2. The model identifies .951
as a point of discontinuity in the relationship between growth and employment, which
roughly corresponds to the 20th percentile of the employment distribution along the time
domain. In particular, the growth equation is depicted to have a negative slope (−.29)
when employment fall in the bottom 20% of its obsersations, and a positive one (.05)
after that point, both of which are significant. The threshold regression then suggests
that a good representation of the data would be a non-monotonic growth equation. This
evidence suggests that it takes a large recession (one that pushes employment very deep)
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Table 2: The U-shaped Growth Equation: threshold regression.

Employment

Region 1 Region 2
Lt ≤ .951 Lt > .951

Lt -.294** .05*
(.098) (.031)

BIC -1616.83
HQIC -1630.93
Controls ✓
N 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. The threshold is estimated minimizing the Bayesian information criteria.

to activate cost-opportunity or cleansing effects that might indeed stimulate growth.

The nonlinear growth equation. To further investigate the nonlinearity of the growth
equation, we estimate a piecewise linear regression:

gt = α + β1Lt + γ′
1Xt +

(
β2Lt + γ′

2Xt
)
1Lt>95.1 + ϵt, (2.4)

where 1Lt>95.1 is an indicator function taking value 1 when employment Lt is above the
threshold value of 95.1 identified by the Threshold Regression Model (2.3) and Xt is the
full vector of controls. Results are reported in the fifth column of Table 1. The coefficient
on employment Lt is negative and significant for the deep recessions subsample (-.295).
The interaction term is positive, implying a coefficient on employment for observations
above the 95.1 threshold of .05 (given by .344 − .294).

The last exercise conducted in this section relative to the growth-employment rela-
tionship, is to evaluate the performance of the quadratic regression model to fit the data
relative to the linear one:

gt = α + β1Lt + β2L2
t + γ′Xt + ϵt. (2.5)

The last column of Table 1 reports results of this exercise. The parameters governing the
shape of the parabola in regression (2.5) depict a significant upward sloped parabola as
a better way to represent the growth equation. Moreover, even if the R2 are generally
low for all regressions, as a result of the high dispersion in the data, the one associated
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with the quadratic model is more than 5 times higher than the one associated to the linear
models. This evidence is consistent with the results from both the threshold regression
and piecewise linear regression and it supports a nonlinear growth equation, where both
market size effects (positive slope) and opportunity costs and cleansing effects (negative
slope) are present.

2.2 Robustness

To test the robustness of our results we reestimate our models on two alternative mea-
sures of productivity growth: labour productivity of the business sector and total factor
productivity, both from Fernald (2014). Results are reported in Tables 5, 6 and 7 in the Ap-
pendix C. The evidence on labour productivity of the business sector is almost identical,
both qualitatively and quantitatively, to the baseline. In particular, there is no evidence
of a linear and positevely sloped growth equation neither in the entire sample nor in
subsamples, and a second order polynomial fitting growth to employment is statistically
significant. Also, the employment threshold is the same as in the baseline. Total factor
productivity instead points towards a mildly significant (at the 10% level) negative re-
lation between growth and employment over the entire sample. However a U-shaped
relation is significant at the 5% level and provides a better fit to the data (R2 is .25 for the
parabola against .23 for the linear model).

Another concern of the baseline specification is that structural changes (such as trend
breaks in the demographic curve) or supply-related characteristics might hinder the iden-
tification of the growth equation. To account for this possibility, we ran all baseline re-
gressions adding the growth rate of population, liabilities of the nonfinancial corporate
business sector (as a proxy for credit availability to firms) and investment in R&D as con-
trols. Results are reported in Table 8. Adding more controls leaves the results unchanged
both qualitatively and quantitatively. However, now the U-shaped growth equation has a
better fit to the data (R2 is now .4 against .11 in the baseline). We can’t check how the em-
ployment threshold is affected by this robustness because the inclusion of more controls
increases the number of parameters to be estimated above what our datapoints allow to
handle via a threshold regression.

One might be concerned that the supply shock we are using in the baseline specifica-
tion is not properly capturing supply shocks. We check this claim estimating the baseline
for all three additional proxies of supply shocks. Results are in Tables 9, 10, 11 respec-
tively for CPI headline, PCE headline and import price shocks. Results are robust to this
exercise and the employment threshold is the same as in the baseline.
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A last exercise we perform is to estimate the baseline specifications with lagged em-
ployment as regressor. Indeed, in the theoretical model we develop below, the growth
equation links current productivity growth to current employment. However, an alter-
native approach popular in the literature is to think of productivity growth as a sluggish
process, hence requiring several cycles of innovation to materially move the technologi-
cal frontier. We thus estimate our empirical models allowing current productivity to be
affected by lagged values of employment. Results are reported in Tables 12,13, 15 and
14. The threshold regression Model 2.3 now identifies .953 as the threshold employment
value for one quarter lagged employment, very close to the baseline of .951, however sig-
nificant only at the 13% level. Instead, for two quarters lagged employment the threshold
is .976, closer to the value found for Fernald (2014) TFP, however not significant. The lin-
ear regressions fail to identify a relationship between growth and employment, as in the
baseline, for both one and two quarters lagged employment. In line with our main result,
a quadratic specification instead fits the data well, with coefficients significant at the 5%
level for one quarter and at the 10% level for two quarters lagged employment.

To summarise, in this section we have tested the robustness of our main finding that
linear models do not provide a good characterization of the employment-growth link in
the data, while a quadratic model does. We found that our results are robust to (i) chang-
ing dependent variables, (ii) adding more controls, (iii) allowing for different proxies of
supply shocks and (iv) lagged values of employment.

3 Theoretical analysis

In this section we conceptualize the empirical evidence discussed above through the lens
of a theoretical model of Keynesian growth, where we allow for heterogeneous innova-
tion (radical and incremental) to drive technological change.

We consider a closed economy, populated by a continuum of unitary mass of house-
holds consuming a final good and supplying labor services, a continuum of unitary mass
of perfectly competitive firms producing the final consumption good out of labor services
and intermediate goods, a continuum of mass N of monopolists producing each a variety
j of intermediate goods using the final good as input, and a policy maker.

3.1 Final good sector

This sector produces the consumption good Yt under perfect competition, using a Cobb-
Douglas technology that combines labor Lt and a continuum of intermediate inputs yt (j)
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whose mass is Nt, indexed by j ∈ [0, Nt] and with associated productivity/quality At (j):

Yt = L1−α
t

∫ Nt

0
At (j)1−α yt (j)α dj, (3.1)

where α ∈ (0, 1). Final good firms maximize their profits choosing the optimal quantities
of intermediate goods and labor services. The solution to this problem is characterized
by the following first order conditions,

Wt = (1 − α) PtL−α
t

∫ Nt

0
At (j)1−α yt (j)α dj (3.2)

pt (j) = αPt (Lt)
1−α yt (j)α−1 At (j)1−α , (3.3)

∀j ∈ [0, Nt], where p (j) is the price of the intermediate good j, P the price of the final
good and W the nominal wage.

3.2 Intermediate good sector

Following Aghion and Howitt (2008), the intermediate good in sector j is produced by a
monopolist using the final good xt (j), with a linear technology,

yt (j) = xt (j) , (3.4)

for j ∈ [0, Nt]. This implies a one to one relationship between intermediate goods, sectors
and firms and we will refer to them interchangeably throughout the text. The monopolist
chooses price and quantity of the intermediate good to solve

Π [At (j)] ≡ max
pt(j),xt(j)

pt (j) yt (j)− Ptxt (j)

subject to (3.3) and (3.4)

which implies the equilibrium quantity of intermediate good j

yt (j) = α
2

1−α At (j) Lt (3.5)

and the equilibrium price of intermediate good j

pt (j) =
1
α

Pt.
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Accordingly, the equilibrium monopolist’s profits in sector j are

Π [At (j)] = ψPt At (j) Lt (3.6)

with ψ ≡ (1 − α) α
1+α
1−α , the equilibrium aggregate amount of intermediate goods is

Xy
t ≡

∫ Nt

0
yt (j) dj = α

2
1−α QtLt (3.7)

while using (3.5) in (3.1) gives the equilibrium level of final output

Yt = α
2α

1−α QtLt.

In both equations above, Q represents the aggregate productivity index, defined as

Qt ≡
∫ Nt

0
At(j) dj, (3.8)

which highlights that, in our economy, aggregate productivity can evolve over time as
a result of innovation along either or both of the following margins: i) the vertical (in-
tensive) margin, measuring the average quality of existing varieties (i.e., changes in A);
and ii) the horizontal (extensive) margin, measuring the mass of existing varieties (i.e.,
changes in N). We turn now to describing in detail these two margins of innovation.

3.3 Innovation

The entrepreneurs running the intermediate-good producing firms belong to a set of po-
tential innovators that compete over who will become the monopolist producer of a given
variety j. Such potential innovators are indexed according to their relative technical and
entrepreneurial skills x ∈ [0, 1], that is drawn from a given unimodal and right-skewed
Beta distribution f (x; α̃, β̃).

Each period, a potential innovator engages in R&D activity to attempt an innovation
that will grant them the status of monopolist in the intermediate-good sector. Once de-
fined the optimal amount of R&D spending necessary to reach the technological frontier,
they choose whether to pursue an incremental innovation, improving the quality of an
existing variety j, or to try and expand the set of varieties producing a radical innovation.
In the first case, their probability of success only depends on the level of R&D spending,
as in Benigno and Fornaro (2018), among others, while in the second case, it also depends
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on their idiosyncratic technical and entrepreneurial skills, x, in the spirit of Lucas (1978).7

3.3.1 Incremental innovation through quality ladders

As in the seminal work of Grossman and Helpman (1991) and Aghion and Howitt (1992),
the engine of vertical innovation is underpinned by quality ladders, in the spirit of the
Schumpeterian idea of creative destruction (Schumpeter, 1942). We think of this type of
innovation as ”incremental” in that it yields to improved products but it doesn’t have the
innovative content to create a brand new fringe.

In each period t and in each sector j, an entrepreneur that chooses to attempt an in-
novation along the vertical margin succeeds with probability zt(j), that is independent of
their technical and entrepreneurial skills x. In this case, the innovation creates a new and
better version of the intermediate good: the productivity of the variety j improves by a
step of size γ, i.e. At (j) = (1 + γ) At−1 (j). If they fail, the intermediate good remains of
the same quality as in t − 1 and it is produced by another randomly chosen monopolist.
Therefore:

At (j) =

(1 + γ) At−1 (j) with prob. zt (j)

At−1 (j) with prob. 1 − zt (j)

In order to generate a successful innovation with probability zt (j), an entrepreneur
must invest in research and development, according to the following production function:

zt (j) =
[

δ
1 + ν

ν

Rt (j)
At (j)

] ν
1+ν

, (3.9)

with ν > 0, and where Rt (j) denotes the amount of final good used in R&D activity. This
production function implies that it is more costly to innovate over more advanced goods.
The entrepreneur maximizes their expected profits from innovation:

dt (j) ≡ max
zt(j)

zt (j)Π [(1 + γ) At−1 (j)]− Rt (j) Pt

subject to (3.6) and (3.9)

7We chose to model incremental innovation as quality ladders (Grossman and Helpman, 1991, Aghion
and Howitt, 1992) and radical innovation as varieties expansion (Romer, 1990b) for tractability. These two
theories of innovation are well known and widely used in macroeconomic models, especially business cy-
cles ones. Our results are invariant to (i) modeling radical innovation along quality ladders and incremental
innovation along varieties expansion and (ii) a more realistic set up in which both types of innovation can
occur within the same margin. However in the scenario (ii) the analysis would be much more complicated,
shadowing the main punchline of the paper.
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leading to the equilibrium innovation intensity in sector j

zt (j) = (δψLt)
ν = zt (3.10)

for all j ∈ [0, Nt]8. Accordingly, the optimal level of R&D spending necessary to achieve
the technological frontier is common across varieties and equal to R∗

t = ν
1+ν δν At(ψLt)1+ν.9

The growth rate of sectoral productivity 1 + gA
t ≡ At

At−1
, therefore satisfies

gA
t = ztγ = γ(δψLt)

ν (3.11)

and the definition of aggregate productivity implies

Qt = Nt At. (3.12)

Using (3.10), the equilibrium expected profits associated to an incremental innovation are

dt =
zt

1 + ν
ψLt AtPt =

zt

1 + ν
Π(At),

which is increasing in employment and thus inherits its cyclicality. This captures the
market size theory of innovation (Grossman and Helpman, 1991, Romer, 1990b, Aghion
and Howitt, 1992), whereby a larger product demand pulls more research effort aimed at
improving product quality and hence capturing larger returns.

3.3.2 Radical innovation through expanding varieties

The engine of horizontal innovation builds on the expanding variety model of Romer
(1990a) and the entrepreneurial-decision model of Lucas (1978). We deem this type of
innovation as ”radical” because it creates completely new fringes, generates higher ex-
pected profits and it requires relatively higher technical and entrepreneurial skills.

In particular, we assume that the number of varieties evolves following

Nt = (1 − ∆) Nt−1 + Ne
t ,

where ∆ is an exogenous obsolescence rate, at which varieties vanish, and Ne
t is the cre-

8To ensure zt ∈ [0, 1] for all t, we assume δ ≤ ψ−1.
9Indeed, equation (3.10) implies that the equilibrium probability of vertically innovating is common

across firms. Assuming a uniform initial cross-sectional distribution of sectoral productivities A−1 (j) =
A−1 for all j ∈ [0, N−1] implies symmetry ex-post: At (j) = At, for all j.
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ation of new ones, which satisfies the production function

Ne
t = ntNt−1, (3.13)

with nt the mass of innovators that succeed in the expansion of varieties.
To describe the latter, we assume that in each period the prospective innovators can

engage in exploration activities. If the activity is successful, innovators become monop-
olists in charge of the production of the new varieties, and thus they enjoy the profits
Π (At). To try and expand the set of known varieties, entrepreneurs must first invest the
same R&D efforts R∗ as the vertical innovators, so as to reach the technological frontier
At. Given this level of R&D spending, the probability of success in the exploration ac-
tivity depends on the idiosyncratic technical and entrepreneurial skills of the potential
innovator, according to function h(x) = κx

1
ϖ with κ, ϖ > 0 such that h(x) ∈ [0, 1] and

h′(x) > 0 for all x ∈ [0, 1].
Under perfect competition and free entry among the potential innovators, a prospec-

tive entrepreneur with a skill level x optimally chooses to try and innovate along the
extensive margin if and only if the implied expected profits are at least as large as those
from incremental innovation:

h(x)Π (At)− R∗
t Pt ≥ dt. (3.14)

The condition (3.14) thus implies the following threshold on the skill endowment that
makes it profitable (in expected terms) to attempt a radical innovation:

xt = x(Lt) = h−1
(
(δψLt)

ν
)
= κ−ϖ (δψLt)

νϖ , (3.15)

at which h(xt) = (δψLt)
ν.

This implies that the continuum of prospective innovators is optimally partitioned
depending on their technical skills x: those endowed with skills x ≥ xt optimally choose
to try and participate in the creation of new varieties, while those with x < xt optimally
limit themselves to incremental innovation.

Proposition 1. At each time t, the mass of innovators participating in the creation of new varieties
is:

nt = n(Lt) =
∫ 1

x(Lt)
h(x) f (x) dx (3.16)

with xt satisfying (3.15), and is a decreasing function of aggregate employment: ∂nt
∂Lt

< 0.

Proof. To show that the mass of innovators participating in the creation of new varieties
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is decreasing in employment, we compute the derivative of nt with respect to Lt. Using
the Leibniz integral rule we obtain:

∂nt

∂Lt
= −h(xt) f (xt)

∂xt
∂Lt

. (3.17)

Note now that the derivative of the threshold is:

∂xt
∂Lt

= νϖκ−ϖ (δψLt)
νϖ

Lt
> 0. (3.18)

Using h(xt) = (δψLt)
ν, as well as (3.10), into (3.17), we finally obtain:

∂nt

∂Lt
= −νϖ f (xt)

z1+ϖ
t

κϖLt
< 0.

Intuitively, a fall in aggregate employment reduces the equilibrium probability of suc-
cess of an attempt at an incremental innovation, as implied by equation (3.10), and thus
the expected profits of exploitative activity. Thereby, this raises the incentive to try and
expand the set of varieties, by enlarging the set of technical skills that can be exploited
to increase the probability of success in the horizontal dimension, and the associated ex-
pected profits. This is consistent with the opportunity cost theory of innovation (Aghion
and Saint-Paul, 1991, Aghion and Saint-Paul, 1998b, Gali and Hammour, 1992, Cooper
and Haltiwanger, 1993, Caballero and Hammour, 1994, Hall, 1991, Saint-Paul, 1997, De-
Long, 1990, Canton and Uhlig, 1999 and King and Robson, 1989) and captures the idea
that, during downturns, the foregone expected profits of incrementing the quality of ex-
isting products are lower, and hence it becomes more appealing to engage in exploration
research that gives access to higher expected returns.

Given this specification, the rate of growth of varieties is

1 + gN
t ≡ Nt

Nt−1
= 1 − ∆+ n(Lt), (3.19)

which is decreasing in employment, as it becomes harder to create new products when
the economy is booming and expected returns from incremental innovation are higher.

3.3.3 The U-shaped growth equation

The previous two sections clarify that the rate of growth of aggregate productivity will
be the result of the interaction of the two driving forces in this economy: i) incremental
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innovation through quality ladders, captured by (3.11), and ii) radical innovation through
expansion of varieties, captured by (3.19). From the definition (3.12), it follows that the
equilibrium rate of growth in aggregate productivity satisfies

1 + gt ≡
Qt

Qt−1
= (1 + gN

t )(1 + gA
t ) =

(
1 + γ(δψLt)

ν
)(

1 − ∆+ n(Lt)
)

. (3.20)

The above equation, together with Proposition 1, shows that the interaction of the
counter-cyclical mechanism on the horizontal margin of innovation with the pro-cyclical
one of vertical innovation may result in a non-monotonic relationship between aggregate
productivity and employment, depending on parameter values. On the one hand, for
high levels of employment the vertical margin of innovation is dominant, and aggregate
productivity growth is thus increasing in L. On the other hand, in deep recessions bring-
ing the employment level sufficiently low, the horizontal margin of innovation kicks in,
and aggregate productivity growth becomes decreasing in L.

In an appropriate subset of the parameter space, the relation (3.20) provides the U-
shaped growth equation that is consistent with the empirical evidence discussed in Sec-
tion 2. As we will show, this non-monotonic behavior is key, as it introduces an additional
channel through which the economy can end up in an adverse steady state. This in turn
has important implications in the analysis of recessions and the industrial policies the
government may undertake to steer the economy out of an unemployment steady state.

We will refer to equation (3.20) as GG throughout the rest of the paper.

3.4 Households

This economy is populated by a unit mass of households deriving utility from consump-
tion of the final good. Their lifetime utility is

E0

[
∞

∑
t=0

βt

(
C1−σ

t − 1
1 − σ

)]
,

where Ct denotes consumption in units of the final good, β ∈ (0, 1) the subjective dis-
count factor and σ > 1 is the relative risk aversion coefficient (and the the inverse of the
elasticity of intertemporal substitution). Within each household there is a unit measure
of members that are willing to supply labor services in the labor market. Within each
household there is perfect consumption sharing.

As in Benigno and Fornaro (2018), households face idiosyncratic unemployment risk:
at the beginning of each period, each household will be unemployed with constant prob-
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ability p. If the household is unemployed, all members of the household are out of a job,
and the household receives an unemployment subsidy that makes its income equal to b
times the income of the employed household, with b < 1. If the household is employed,
on the other hand, its members supply inelastically labor services on the labor market.
Because of nominal rigidities, however, the equilibrium may imply a labor demand from
firms that is insufficient to absorb all labor supply and a measure 1 − Lt ∈ (0, 1) of the
household members may be unemployed. The unemployed members of the employed
household, however, will enjoy the same level of consumption of the employed ones, due
to the perfect risk-sharing mechanism at work within the household.10

Households have access to risk free bonds Bt that pay the nominal interest rate it and
own all the firms, from which they receive dividends Dt.

Thus, the flow budged constraint reads

PtCt +
Bt+1

1 + it
= IWtLt + Bt + Dt + Tt

where the indicator function I takes value 1 if the household is employed and 0 otherwise,
while the transfer Tt will be a subsidy for the unemployed and a tax for the employed.11

The household maximizes her expected lifetime utility subject to the flow budget con-
straint, a no-borrowing constraint for unemployed households, Bt+1 ≥ 0, no trade in
firms’ shares and a standard no-Ponzi game condition. Noticing that the borrowing con-
straint binds only for unemployed households, this problem leads to the following first
order conditions:

µt =
(Ce

t )
σ

Pt
(3.21)

µt = β (1 + it)Etµt+1 (3.22)

together with the standard transversality condition limT→∞ Etβ
T Uc,T

Uc,t BT = 0, where Ce
t

denotes consumption of employed households, and by the assumption on unemployed
households’ income, Cne

t = bCe
t < Ce

t .

10Given this structure, there are two types of unemployment. The first type is “exogenous”, of mass p.
The second type is instead “endogenous”, as it is generated by the equilibrium labor demand, and it is
measured by the mass (1 − p) (1 − Lt). Hence, households accounting is summarised as follows:

1 = p︸︷︷︸
exogenous unemployed

+ (1 − p) (1 − Lt)︸ ︷︷ ︸
endogenous unemployed

+ (1 − p) Lt︸ ︷︷ ︸
employed

.

11In particular, for the employed Tt = − p
1−p

bWt Lt+(b−1)Ntdt

1+ bp
1−p

and for the unemployed Tt =
bWt Lt+(b−1)Ntdt

1+ bp
1−p

.

20



3.5 Nominal rigidities and monetary policy

We introduce nominal frictions so that there will be a role for monetary policy in this
framework and involuntary unemployment will be possible. Following Benigno and
Fornaro (2018), we start by assuming that wages evolve according to constant inflation,

Wt = π̄wWt−1 (3.23)

and will relax later this assumption introducing a wage Phillips curve.
Monetary policy follows an interest rate rule considering the ZLB (i.e. it ≥ 0),

1 + it = max
{
(1 + ı̄) Lϕ

t , 1
}

(3.24)

where ϕ > 0 and ı̄ ≥ 0. Under this specification and combining (3.2) and (3.5), prices are

Pt = ω−1 Wt

Qt
(3.25)

where ω−1 ≡ 1
1−α α

2α
α−1 while stationary real wages are Wt

PtQt
≡ ω. Combining the equation

for prices (3.25) and the law of motion of wages (3.23) one gets the price inflation

πt ≡
Pt

Pt−1
=

π̄w

1 + gt
. (3.26)

3.6 Equilibrium

The resource constraint implies that the final output is used either to consume, to produce
the intermediate good or employed in research activities for innovation:

Yt = Ct +
∫ Nt

0
yt (j) dj +

∫ Nt

0
Rt (j) dj.

Using (3.5), (3.8), (3.9) and (3.10) one gets

Ct = ΨLtQt −
νδν

1 + ν
(ψLt)

1+ν Qt,

where Ψ ≡ α
2α

1−α
(
1 − α2). Defining the stationary level of consumption as ct = Ct/Qt the

resource constraint can be written as

ct = ΨLt −
νδν

1 + ν
(ψLt)

1+ν . (3.27)
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Turning to households, combining (3.21), (3.22) and (3.26), and using the fact that
Ct = pCne

t + (1 − p)Ce
t and that by the assumption on unemployed households’ income

Cne
t = bCe

t < Ce
t , the Euler equation is

π̄wc−σ
t = β (1 + it) ρEt

{
c−σ

t+1 (1 + gt+1)
1−σ
}

(3.28)

where ρ = 1 + p(b−σ − 1) > 1, and we assume σ > 1 so that the income effect dominates
and there is a positive relationship between current consumption and future expected
productivity.

This analysis leads to the following definition:

Definition 1. A stationary equilibrium in this economy is a sequence {ct, gt, Lt, it, nt, xt}
∞
t=t0

that satisfies (3.15), (3.16), (3.20), (3.24) (3.27) and (3.28), and Lt ≤ 1 for each t ≥ t0, given the
parameters σ, π̄w, ρ, β, Ψ, δ, γ, ∆, ψ, κ, ϖ, ν, ı̄, ϕ, a function h(x) with h(x) ∈ [0, 1] and h′(x) >
0, and a density function f (x).

3.7 Steady State Analysis

Turning off aggregate uncertainty and focusing on constant values for consumption c,
labour L, aggregate productivity growth g and for the nominal interest rate i, equilibria
are characterized by the solutions to the following system of equations:

(1 + g)σ−1 =
ρβ (1 + i)

π̄w (3.29)

c = ΨL − νδν

1 + ν
(ψL)1+ν (3.30)

1 + g =
(

1 + γ(δψL)ν
)(

1 − ∆+ n(L)
)

(3.31)

n(L) =
∫

x≥x(L)
h(x) f (x) dx (3.32)

x(L) = h−1
(
(δψL)ν

)
(3.33)

1 + i = max
[
(1 + ı̄) Lϕ, 1

]
. (3.34)

The system (3.29)-(3.34), can be described by two relevant equations. Combining the
Euler equation (3.29) with the monetary policy rule (3.34) one gets an aggregate-demand
type of relationship between productivity growth and labour:

1 + g = max

{(
ρβ

π̄w

) 1
σ−1

,
[

ρβ

π̄w (1 + ı̄) Lϕ

] 1
σ−1
}

(3.35)
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and it is easy to see that when i > 0 the second element in the max dominates and the
relationship between labour L and productivity growth g is positive; when instead i = 0
the relationship between labour L and aggregate productivity g becomes flat because the
central bank is not anymore able to respond to unemployment decreasing further the
policy rate.12 We will refer to equation (3.35) as AD. The other relevant equation is the
GG evaluated at the steady state (equation 3.31).

The system (3.29)-(3.34) gives rise to multiple equilibria, under some conditions. In
particular a full employment steady state emerges naturally and with few assumptions
while multiple unemployment steady states can emerge if radical innovation is not rela-
tively strong enough.

3.7.1 Full employment Steady State

A full employment steady state is characterized by LF = 1. From (3.31) we get

1 + gF =
(

1 + γ(δψ)ν
)(

1 − ∆+ n(1)
)

(3.36)

(3.33) implies xF = κ−ϖ (δψ)νϖ while (3.29) yields

1 + iF =
(

1 + gF
)σ−1 π̄w

ρβ

and monetary policy supports the full employment steady state by setting ı̄ = iF. Lastly,
from the resource constraint (3.30) we can recover the consumption level

c = Ψ − νδν

1 + ν
ψ1+ν.

Assumption 1. The parameters satisfy:(
1 + γ(δψ)ν

)(
1 − ∆+ n(1)

)
> 1 (3.37)

δψ ≤ 1 (3.38)[(
1 + γ(δψ)ν

)(
1 − ∆+ n(1)

)]σ−1 π̄w

ρβ
> 1 (3.39)

Φ > 0 (3.40)

ϕ > (σ − 1)Φ. (3.41)

12Note that i > 0 occurs when L > L̄ ≡ π̄w

ρβ
1

(1+ı̄) . while i = 0 when L ≤ L̄.
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where Φ ≡
[

γν(δψ)ν

1+γ(δψ)ν +
n′(1)

1−∆+n(1)

]
.

Proposition 2. (Existence, uniqueness and local determinacy of the full employment steady state)
Suppose Assumption 1 is satisfied. Then there exists a unique full employment steady state char-
acterised by LF = 1, gF > 0, iF > 0 and cF > 0 and it is locally determinate.

Proof. Please refer to Appendix A.1.
Assumption (3.37) ensures that the full-employment growth rate is positive, while

assumption (3.38) makes sure that the full-employment consumption level is positive
and that the innovation probability lies between zero and one, i.e. zt ∈ [0, 1]. Anal-
ogously, assumption (3.39) guarantees that the interest-rate target is positive and consis-
tent with the full-employment steady state. Finally, assumption (3.40) implies that the GG
is locally increasing around the full-employment steady state, and assumption (3.41) en-
sures that the central bank is sufficiently responsive to fluctuations in employment to rule
out sunspot fluctuations that may keep the equilibrium away from the full-employment
steady state. Note that assumption (3.41) effectively requires that—in a neighborhood of
the full-employment steady state—the slope of the AD schedule, i.e. ϕ/(σ − 1), be larger
than the slope of the growth equation, i.e. Φ. This interpretation clarifies that the condi-
tion for local determinacy is milder with respect to the one in Benigno and Fornaro (2018),
because the horizontal margin of innovation tends to reduce the slope of the growth equa-
tion for any level of employment, thus reducing the threshold level of policy responsive-
ness required to implement determinacy.

3.7.2 Unemployment Steady States

An unemployment steady state is characterised by i = 0 which, by equation (3.29) implies

gU =

(
ρβ

π̄w

) 1
σ−1

− 1 < gF, (3.42)

where the inequality is implied by assumption (3.39).
Now note that in our framework, due to the U-shape of the GG equation, neither

the existence of an unemployment steady state nor its uniqueness are ensured by the
assumptions made so far. In particular, existence of at least one unemployment steady
state requires that the minimum of the GG (with respect to L) be less than, or at most equal
to, the level of growth at the zero lower bound consistent with the horizontal portion of
the AD, gU, and that the slope of the GG at L = 1 be smaller than the one of the AD. This
latter condition is ensured by assumption (3.41), as discussed above, while the former
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depends on the shape of the function governing the radical margin of innovation. We can
characterize this result in the following proposition:

Proposition 3. (Existence, multiplicity and local determinacy of stagnation traps)
Suppose assumption 1 is satisfied, and that, in addition, the parameters satisfy

ν ≤ 1 + α

α
(3.43)

ρβ > π̄w (3.44)

n(0)− ∆ ≥ gU. (3.45)

Then, the following holds:

1. Existence and multiplicity

• at least one unemployment steady state exists if and only if the following is satisfied:

min
L

(
1 + γ(δψL)ν

)(
1 − ∆+ n(L)

)
≤ 1 + gU (3.46)

• if condition (3.46) holds with equality, there is exactly one stagnation trap

• otherwise, there are exactly two stagnation traps

in either case, these unemployment steady states satisfy

iU = 0, gU
1 = gU

2 = gU < gF, 0 < cU
1 ≤ cU

2 < cF, 0 < LU
1 ≤ LU

2 < LF = 1.

2. Local determinacy

• when there is only one stagnation trap, it is locally indeterminate

• when there are two stagnation traps, the one associated with the lower employment
rate, LU

1 , is locally determinate while the other, LU
2 , is locally indeterminate.

Proof. Please refer Appendix A.2.
Assumption (3.41) ensures that the upward sloped portion of the AD lies below the

GG over a left neighbourhood of L = 1 while assumption (3.46) guarantees that the GG
schedule has a minimum below or on the horizontal portion of the AD so that at least
one unemployment steady state exists. It also implies that, if two unemployment steady
states exist—that is if (3.46) holds with strict inequality—then one is associated to a locally
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downward-sloping GG and the other with an upward-sloping GG. Assumption (3.44) en-
sures productivity growth to be positive in the unemployment steady states. Assumption
(3.38) instead ensures that consumption is positive for each and any LU

i with i = 1, 2,
and (3.43) that consumption is increasing in employment for any L ∈ [0, 1], implying
0 < cU

1 ≤ cU
2 < cF.

The blue and red solid lines in Figure 1 display the relevant AD and GG schedules in
our economy, and the multiple unemployment steady states they can support.

To understand the nature and implications of this multiplicity, consider as a bench-
mark the simplified case—nested in our environment—where innovation can only occur
through the vertical margin, as in Benigno and Fornaro (2018), i.e. ∆ = κ = 0, implying
n(L) = 0 for any L ∈ [0, 1] and gN = 0. The GG schedule in this case is monotonically
increasing and the market size effect is the only driver of innovation:

1 + g = 1 + gA = 1 + γ(ψδL)ν.

This case is displayed by the dashed red line in Figure 1. In an appropriate subset of the
parameter space, two steady states exist: the full employment equilibrium,

(
1, gF), and

the stagnation-trap equilibrium,
(

LU, gU), with LU < 1 and gU < gF.13 In particular, once
condition (3.44) is satisfied, the stagnation-trap equilibrium always exists. In this unem-
ployment steady state, monetary policy is constrained by the zero lower bound, and it is
thus unable to grant the necessary responsiveness needed to rule out sunspot fluctuations
for any level of employment. This implies (local) indeterminacy of the stagnation trap in
economies where the only margin of innovation is the incremental one, where the GG
schedule is monotonic increasing in employment.

Compared to this benchmark, the general specification of our model, including het-
erogeneous innovation, has several implications.

We start by noting that the engine of radical innovation is in principle able to prevent
stagnation traps altogether. Indeed, whether or not assumption (3.46) is satisfied depends
on the particular shape of radical innovation, and in particular on the parameterization of
function h(x). The easier it is to create a new variety, the higher the relative strength of the
horizontal margin of innovation over the vertical one for any given level of employment,
and a fortiori during recessions. This suggests that there exists a subset of the parameter
space of function h(x) for which assumption (3.46) is violated, the GG schedule lies en-
tirely above the 1+ gU line, and stagnation traps do not arise at all. This case is displayed

13For the sake of the comparative discussion, we are assuming—without loss of generality—that the
full-employment steady states in the two specifications of the model—with and without horizontal inno-
vation—are the same, which requires setting ∆ = n(1) in the general model.

26



AD𝑔

𝐿

𝑔𝑈

1

𝑔𝐹

𝐿!"𝐿#" 𝐿"

GG

Figure 1: Multiple stagnation traps.

by the dashed-dotted red line in Figure 1. This also means that any policy intervention
that affects the minimum threshold ability xt needed to create a new variety and makes
it easier, is in principle able to prevent the formation of stagnation traps or to allow the
economy to escape from them, as we discuss in Section 4.

However, while radical innovation may rule out stagnation traps, when such traps do
arise they are generally harsher than in the simplified case, in two respects. The first is re-
lated to the fact that the GG schedule is flatter around the full employment steady state, as
discussed. This on the one hand reduces the burden on monetary policy to induce deter-
minacy of the full-employment equilibrium, through an aggressive responsiveness, but
on the other hand it implies that—if the full-employment equilibrium is the same—the
stagnation traps in the general model are associated to a lower level of employment com-
pared to the simplified one, i.e. LU

1 ≤ LU
2 < LU. This is related to the fact that, in the

general model, falling employment has a weaker effect on productivity growth because
of the counter-cyclical radical margin of innovation, thereby requiring a larger fall in em-
ployment to reach the demand-determined equilibrium rate of growth gU.

The second respect in which stagnation traps are harsher when heterogeneous inno-
vation is accounted for is related to the U-shape of the GG schedule. As stated in Propo-
sition 3, if condition (3.46) is satisfied, a second unemployment steady-state exists, which
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is worse than the first one for two reasons: i) it is associated to a lower employment rate,
i.e. LU

1 < LU
2 , and, most importantly, ii) it is locally determinate. In our economy, indeed,

the lack of an endogenous policy response at the ZLB is not necessarily associated to an
indeterminate equilibrium. Since equilibrium radical innovation is counter-cyclical, this
margin is in principle able to provide a shield against sunspot fluctuations—preventing
downward revisions in employment expectations to become self-fulfilling—if it is strong
enough. This in particular occurs when the unemployment steady state is associated to
the downward-sloping part of the GG schedule.

Interestingly, depending on the calibration of the model, the two unemployment equi-
libria could almost overlap. In such a scenario, one would focus only on the stable un-
employment equilibrium, as any small structural shock in its neighborhood would in-
evitably yield to its basin of attraction. This is a very important feature of our framework:
stagnation traps can indeed be stable and absorbing states, and structural shocks can pull the
economy towards their gravitational basin. This feature can help rationalize the funda-
mental nature of persistent slumps and liquidity traps, such as the ones experienced in
the Euro Area and Japan.

3.8 A numerical illustration

In this section we provide a numerical illustration of the implications of heterogeneous in-
novation for the unemployment equilibria, in a calibrated version of the model extended
to allow for a more meaningful form of nominal rigidities. In particular, we introduce
downward nominal-wage rigidity as in Benigno and Fornaro (2018), which gives rise to
a wage Phillips curve:

Wt

Wt−1
= πw

t ≥ θ (Lt)

with θ′ > 0 and θ (1) = π̄w. For πw
t ≥ π̄w output is at potential, otherwise there is a

positive relationship between inflation and the output gap.
Now the central bank responds to deviations of wage inflation from a target π∗, still

following a truncated interest rate rule:

1 + it = max

[
(1 + ı̄)

(
πw

t
π∗

)ϕ

, 1

]
(3.47)

where π∗ ≥ π̄w so that when the central bank hits the target the economy is at full em-
ployment. Moreover, we assume the interest rate target to be 1 + ı̄ = π∗

ρβ

(
1 + gF)σ−1 ,
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where gF is the full-employment rate of growth in productivity.14

In this set up, a steady state is characterized by the solution to the system described
by (3.31), (3.47) evaluated at the steady state, (3.30) and

(1 + g)σ−1 =
ρβ (1 + i)

πw (3.48)

πw ≥ θ (L) . (3.49)

Combining (3.48), (3.47) and (3.49), the new AD is

1 + g = max


(

ρβ

θ (L)

) 1
σ−1

,

[
ρβ

θ (L)
(1 + ı̄)

(
θ (L)
π∗

)ϕ
] 1

σ−1
 (3.50)

which is characterized by a negative relationship between productivity growth and em-
ployment for values of labour L low enough so that the zero lower bound binds.

Proposition 4. (Local determinacy of the full employment steady state) Suppose Assumption 1 is
satisfied, where condition (3.41) is modified as follows:

ϑϕ > (σ − 1)Φ + ϑ, (3.51)

with ϑ > 0 governing the slope of the Phillips curve:

θ(L) ≡ π∗Lϑ. (3.52)

Then the full employment steady state characterised by LF = 1, gF > 0, iF > 0 and cF > 0 is
locally determinate.

Proof. Please refer to Appendix A.3.
The above proposition, and in particular condition (3.51), emphasizes that, in order

for the full-employment steady state to be locally determinate, monetary policy must be
relatively more responsive to employment than in the simple model, in order to coun-
teract the inflationary implications of a positively-sloped Phillips curve. To see this, note
first that the policy rule in the general model responds to deviations of wage inflation
from target, while in the simple model it responds directly to deviations of employment
from target. Nonetheless, the specific functional form assumed for the Phillips curve—i.e.
equation (3.52)—implies that we can re-cast equation (3.47) in a form analogous to (3.24),

14This guarantees that when πw = π∗ then by (3.47) i = ı̄ =⇒ g = gF and by (3.31) L = 1.

29



AD
𝑔

𝐿1

𝑔𝐹

𝐿!"𝐿#" 𝐿"

GG

𝑔#"

𝑔𝑈
𝑔!"

Figure 2: Existence and multiplicity of stagnation traps with the Phillips curve. Solid blue line: aggregate
demand with high wage flexibility. Dashed blue line: aggregate demand with low wage flexibility.

to highlight the degree of responsiveness to employment:

1 + it = max
[
(1 + ı̄) Lϑϕ

t , 1
]

,

where the implied response coefficient to employment is ϑϕ. Moreover, Proposition 4 also
implies that local determinacy of the full-employment steady state requires this response
to be strong enough to make the AD schedule steeper than the GG (see Appendix A.3).

Figure 2 displays the set of equilibria in this extended model, for the same alternative
specifications of the growth equation we used in Figure 1. As in the simple case, when
the only margin of innovation is the vertical one, and the growth equation is thereby
monotonic upward-sloping, the existence of a stagnation trap is granted, and the asso-
ciated unemployment steady state

(
LU, gU) is indeterminate. In addition—as argued in

Benigno and Fornaro (2018)—higher wage flexibility leads to better outcomes in terms
of productivity growth and employment in the stagnation trap. Figure 2 shows that ac-
counting for heterogeneous innovation affects all these features.

Proposition 5. (Local determinacy of the unemployment steady states) Suppose the assumptions
of Proposition 3 are satisfied, that the Phillips curve is described by (3.52), and that at least one
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unemployment steady state exists, satisfying

iU = 0, gU
1 ≥ gU

2 < gF, 0 < LU
1 ≤ LU

2 < LF = 1.

Then each unemployment steady state is locally determinate if and only if the local slope of the
AD schedule around that steady state is higher than the one of the GG schedule, which requires:

Φ0 <
−ϑ

σ − 1
< 0, (3.53)

where Φ0 is the slope of the GG locus and −ϑ
σ−1 < 0 the slope of the AD locus in a liquidity trap.

As a consequence, if there is only one unemployment steady state, it is locally indeterminate.
Otherwise, if there are two unemployment steady states, the one associated with the lower employ-
ment rate, LU

1 , is locally determinate while the other, LU
2 , is locally indeterminate.

Unlike in the simple model, the locally indeterminate equilibrium does not need to lie on the
upward-sloping part of the GG schedule.

Proof. Please refer to Appendix A.4.
First, as in the simple model, existence of stagnation traps is not granted in spite of

the Phillips curve if the engine of horizontal innovation is strong enough (dashed-dotted
line in the figure). Moreover, when stagnation traps do exist, they are in general charac-
terized by multiple unemployment steady states. Of these multiple steady states, the one
associated with the lower equilibrium unemployment

(
LU

2 , gU
2
)

is locally indeterminate,
while the one associated with the higher unemployment

(
LU

1 , gU
1
)

is locally determinate,
as in the simple model. An interesting additional implication compared to the simple
model is that the determinate stagnation trap is not only associated with a higher unem-
ployment, but also with a higher growth rate, compared to the indeterminate trap. This
allows the model to rationalize the existence of “jobless-growth traps”, where the growth
rate is high, but the employment rate is low. To emphasize this difference, henceforth we
are going to refer to the indeterminate equilibrium as “stagnation trap”, and use the term
“jobless-growth trap” for the determinate one.

Second, the role of wage flexibility is now more effective than in the case of a mono-
tonic growth equation. Note indeed that a lower wage flexibility is associated with a
flatter downward-sloping part of the AD schedule. On the one hand, this implies that the
stagnation and the jobless-growth traps become relatively more similar in terms of both
unemployment and growth rates, as the intersection points get closer to each other. There
exists in particular a specific degree of wage stickiness such that the downward-sloping
part of the AD is tangent to the GG equation, whereby the two equilibria overlap in a sin-
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Table 3: Calibrated Parameters

Parameter Description Value Source or Target

1/σ Elasticity of int. substitution 0.5 Benigno and Fornaro (2018)
β Discount factor 0.96 Benigno and Fornaro (2018)
ρ Idiosyncratic risk 1.092 full-employment real interest rate = 1.5%

π∗ Wage inflation target 1.052 full-employment price inflation = 2%
1 − α Share of labour in gross output 0.930 full-employment R&D-to-GDP = 2%

γ Incremental innovation step size 1.230 Match the data
ν Incremental innovation elasticity to

R&D parameter
1.346 Match the data

δ Incremental innovation scale
parameter

14.12 Match the data

∆ Obsolescence rate of varieties 0.375 Match the data
κ Radical innovation scale parameter 0.535 Match the data
ϖ Radical innovation exponential

parameter
7.274 Match the data

α̃ Beta Distribution shape parameter 0.981 Match the data
β̃ Beta Distribution shape parameter 5.499 Match the data
ϑ Phillips curve parameter 0.34 output gap in stagnation traps ∈ [5%, 10%]

gle stagnation trap. As in the simple model, in this case the unemployment equilibrium
is indeterminate. On the other hand, this also implies that if wages are sticky enough,
the existence of unemployment steady states may be ruled out altogether, with the only
remaining steady state being the full-employment equilibrium.

Within this extended framework, we can provide a numerical illustration of the impli-
cations of the U-shaped growth equation for the economy.

To calibrate the structural parameters, we adopt the following simple strategy. When-
ever possible, we rely on convention or related literature. When it comes to the parame-
ters shaping the growth equation—along both the incremental and radical margins—we
optimize their calibration in order to fit the quadratic relation between growth and em-
ployment implied by the estimated parameters of the regression model (2.5), over the
range of employment rates that includes our sample. Moreover, when it comes to the
Phillips curve, we calibrate the parameter governing the slope, ϑ, in order for the two
unemployment steady states to imply levels of the output gap between 5 and 10 percent,
in line with the observed slumps in the post-GFC period in the US and the Euro Area.
Table 3 collects the full set of calibrated values.

This calibrated example implies the two schedules plotted in Figure 3, where, in order
to plot the upward-sloping part of the AD schedule, we further calibrate the response
coefficient of the Taylor Rule to ϕ = 3.5, which implies an overall response to employment
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Figure 3: Equilibria in the calibrated example. The y−axis measures the growth rate g, in percentage points.

of ϑϕ = 1.2.15 We then report in Table 4 the implied value for a set of variables of interest,
to compare the three steady state that arise in this calibrated example.

As the figure shows, the economy in this numericall illustration features three pos-
sibile equilibria: a full-employment steady state, a locally indeterminate stagnation trap
with positive unemployment and low growth, and a locally determinate jobless-growth
trap with higher unemployment than the stagnation trap but also higher growth.

Table 4 displays the implications of the several equilibria for a set of variable of inter-
est. The first column shows the case of the full-emloyment equilibrium, where the 3.16%
growth rate is the one implied at full employment by the growth equation estimated us-
ing the empirical model (2.5). The targeted levels of 1.5% and 2% respectively for the real
interest rate and price inflation imply a nominal interest rate of about 3.5% and a wage
inflation of about 5.2%, while the output gap is zero by definition of full employment.

The second column shows the case of the stagnation trap, where the nominal inter-
est rate is at the zero-lower bound, and employment falls by 5 percentage points. This
equilibrium is characterized by a strong fall in both productivity growth— which is less
than a half of the full-employment level—and the real interest rate—which turns strongly
negative. As a consequence, this equilibrium features positive price inflation (close to the
target) and a lower wage inflation, about two thirds of the full-employment level.

The third column shows the jobless-growth trap, where on the one hand employ-
ment falls by an additional 1.6 percentage points relative to the stagnation trap, while
on the other hand productivity growth falls much less, to about two thirds of the full-

15Note that this response coefficient does not affect any of the steady-state equilibria. Therefore, we
choose an arbitrary value—such that it satisfies the condition for local determinacy of the full-employment
equilibrium—for the sole purpose of the plot.
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Table 4: Numerical Illustration

Full-employment steady state Unemployment steady states

Stagnation Trap Jobless-Growth Trap

Productivity growth 3.16 1.41 1.99
Output gap 0.00 5.00 6.59
Nominal interest rate 3.53 0.00 0.00
Real interest rate 1.50 −1.95 −0.81
Price inflation 2.00 1.97 0.81
Wage inflation 5.23 3.41 2.82

employment benchmark. This equilibrium features very realistic implications also for
the real interest rate and inflation rates, with the real rate turning slightly negative, price
inflation being moderately positive but less than half its target level, and wage inflation
falling to about half the full-employment benchmark.

4 Stagnation Traps and Economic Policy

This section discusses some implications for policy that can be drawn from the analysis
of the previous sections, focusing in particular on growth policies.16

Assume the policy maker introduces a constant subsidy s ∈ (0, 1) on radical innova-
tion, that leads to the creation of new varieties. The subsidy is financed entirely with a
lump-sum tax on households.17 The free entry condition in the (3.14) becomes

h(x)Π (At)− (1 − s)R∗
t Pt ≥ dt. (4.1)

As a consequence, a positive subsidy s > 0 reduces the minimum level of innovation

16We dispense with the discussion of the monetary-policy implications as those rely essentially on the
ability of the central bank to rule out a liquidity trap, and therefore the analysis of Benigno and Fornaro
(2018) applies to our economy as well.

17This obviously does not change the resource constraint because

PtCt = WtLt − Tt + PtYt − WtLt −
∫ Nt

0
Pt (j) yt (j) dj︸ ︷︷ ︸

Final good firm profits

+

+
∫ Nt−1

0
(Pt (j) yt (j)− Ptyt (j)− Rt (j) Pt)︸ ︷︷ ︸

Int. good, incremental innovation profits

+
∫ Nt

Nt−1

(Pt (j) yt (j)− Ptyt (j)− (1 − s) Rt (j) Pt)︸ ︷︷ ︸
Int. good, radical innovation profits

and Tt = sRtPt (Nt − Nt−1) .
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intensity along the horizontal margin that is needed to profitably create a new variety,
which is now equal to

h(xt) =

(
1 − s

ν

1 + ν

)
(δψLt)

ν . (4.2)

In turn, therefore, the minimum level of technical and entrepreneurial skills is also lower
for higher susbisidies, and lower than in the baseline model:

x(Lt, s) =
(

1 − s
ν

1 + ν

)ϖ

x(Lt), (4.3)

where x(Lt) is the threshold in the baseline model, defined by equation (3.15).
Thus, subsidising radical innovation makes it easier for prospective entrepreneurs to

create new varieties because it tilts the relative returns from radical versus incremental
innovation in favor of the former. From the perspective of the overall growth process, we
can state the following proposition.

Proposition 6. Suppose the assumptions of Propositions 4 and 5 are satisfied.
Then the introduction of a positive constant subsidy s ∈ (0, 1) on the creation of new varieties

implies an upward shift and a clockwise rotation of the GG schedule.

Proof. Please refer to Appendix A.5.
As we show in Figure 4, the shift and clockwise rotation of the GG schedule push

the two unemployment equilibria toward each other and, if the subsidy is large enough,
is able to rule out the existence of such unemployment equilibria altogether. Note that
the shift of the GG is associated with a shift in the upward-sloping part of aggregate
demand as well, because the introduction of the subsidy raises the natural rate of interest
consistent with full employment, iF, and therefore the central bank has to adjust the target
for its policy rate ı̄ to support the new equilibrium. This in turn implies that the domain
of employment over which the zero bound on the interest rate binds becomes smaller, as
the central bank has more room to cut its policy rate.

On the one hand, the upward-shift part of Proposition 6 suggests that the introduc-
tion of a subsidy allows the economy to reach a new full employment steady state char-
acterised by a higher productivity growth, as it improves the creation of new varieties for
any level of employment, and reinforces the growth process induced by vertical innova-
tion also at full employment.

On the other hand, the rotation part of the proposition implies that the introduction
of the subsidy makes the GG steeper before its minimum and flatter after it. In other
words, the subsidy strengthens the relative weight of the horizontal margin of innovation
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Figure 4: Existence and multiplicity of stagnation traps: the role of growth policy. Solid red line: U-
shaped growth equation in the absence of subsidies (s = 0). Dashed lines: U-shaped growth equation and
aggregate demand when radical innovation is subsidised at the constant rate s > 0.

over the vertical one on the entire domain of Lt ∈ [0, 1], but particularly on low values
of Lt. This is because the opportunity cost argument motivating the pursuit of radical
innovation kicks in earlier, being exploration research activities subsidised.

It is important at this point to focus on the differences between our framework with
heterogeneous innovation and the seminal paper Benigno and Fornaro (2018), in the be-
havior under a subsidy policy. Benigno and Fornaro (2018) introduce an additive subsidy
that is contingent on growth (or employment) in order to induce the strict convexity (and
non-monotonicity, in the case of wage Phillips curve) in the GG schedule that is needed
in order to rule out the stagnation trap for any relevant value of employment. While both
features are powerful and theoretically sensible in delivering the result that a stagnation
trap can be ruled out, translating the theoretical result in a practical policy action may be
hard. Our framework delivers a much simpler policy prescription. In our economy, the
extensive margin of innovation naturally delivers a strictly convex and non-monotonic
growth schedule, without the need for a state-contingent subsidy to induce it. As a result,
a non-contingent subsidy is able to rule out the (multiple) stagnation traps, by affecting
the position of the GG locus with a simple tool.
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5 Conclusion

We have provided empirical evidence that favors a non-monotonic, U-shaped relation-
ship between productivity growth and employment over the period 1948-2019, which
reconciles the ”market size” and ”opportunity cost” theories of innovation.

We have introduced heterogeneous innovation—radical, driven by opportunity cost
and incremental, driven by market size—in a Keynesian endogenous growth framework
with nominal rigidities and monetary policy. The interaction between radical and incre-
mental innovation changes over the business cycle, yielding a U-shaped growth equation.
We showed the conditions for existence, determinacy and multiplicity of unemployment
equilibria. We found that a U-shaped growth equation can generate stable equilibria with
low-growth and low-employment and a liquidity trap. We showed that economic poli-
cies aimed at incentivising exploratory research activities can both prevent the exposure
to unemployment equilibria and help the economy escape them. This paper shows that a
non-contingent subsidy to research exploration activities achieves this.
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A Proofs of propositions

A.1 Proposition 2

Proof. Let us first prove existence. Setting LF = 1 in the system (3.29)-(3.34) and using
(3.31) implies

gF =
(

1 + γ(δψ)ν
)(

1 − ∆+ n(1)
)
− 1

which is positive because of assumption (3.37). Equation (3.29) then implies

iF =
[(

1 + γ(δψ)ν
)(

1 − ∆+ n(1)
)]σ−1 π̄w

ρβ
− 1

which is positive because of assumption (3.39), and equation (3.34) implies ı̄ = iF so
that the central bank supports the full employment steady state setting the policy rate
consistent with it. Using (3.30) one gets

cF = Ψ − νδν

1 + ν
ψ1+ν > 0
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where the inequality is ensured by assumption (3.38), given the definitions ψ ≡ (1 − α) α
1+α
1−α

and Ψ ≡ α
2α

1−α
(
1 − α2), and α ∈ (0, 1). Thus a full employment steady state exists. It is

also unique because, given LF = 1 equation (3.31) implies only one value of gF consistent
with it and so does equation (3.29) given gF.

Concerning determinacy, note that a log-linear approximation of system (3.29)-(3.34)
around the full employment steady state yields:

ĉt = ΩL̂t (A.1)

σĉt = −ît + σEt ĉt+1 − (1 − σ)Et ĝt+1 (A.2)

ĝt = ΦL̂t (A.3)

ît = ϕL̂t (A.4)

where Ω ≡
1+α

α −ν(δψ)ν

1+α
α − ν

1+ν (δψ)ν
, Φ ≡

[
γν(δψ)ν

1+γ(δψ)ν +
n′(1)

1−∆+n(1)

]
, and we use the notation: ĉt ≡ ct−cF

cF ,

L̂t ≡ Lt−LF

LF , ı̂t ≡ it−ı̄
1+ı̄ and ĝt ≡ gt−gF

1+gF .
Now use (A.1), (A.3) and (A.4) in (A.2) to reduce the system above into the following

stochastic difference equation in employment:

L̂t =
σΩ + (σ − 1)Φ

σΩ + ϕ
Et L̂t+1. (A.5)

The above equation has a (locally) unique rational-expectations solution, i.e. L̂t = 0,
as long as

∣∣∣σΩ+(σ−1)Φ
σΩ+ϕ

∣∣∣ < 1, requiring

ϕ > (σ − 1)Φ

which is guaranteed by assumption (3.41). Hence the full employment steady state is
locally determinate.

A.2 Proposition 3

Proof. We start by proving existence. Setting i = 0 in (3.29) we get

1 + gU =

(
ρβ

π̄w

) 1
σ−1

> 1

where the inequality is ensured by assumption (3.44). By assumption (3.45), the GG starts
above the (positive) growth rate gU and by assumption (3.46) it reaches a minimum be-
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low it. This implies that the GG schedule must be downward-sloping at least over some
interval (L̄, L∗), for some L̄ ≥ 0 and where L∗ = arg min

(
1 + γ(δψL)ν

)(
1 − ∆+ n(L)

)
.

Moreover, since 1+ gA is monotonically increasing and convex, since 1+ gN is monotoni-
cally decreasing and since, by condition (3.40), (1+ gA)(1+ gN) is upward-sloping when
L = 1, it follows that (1 + gA)(1 + gN) is monotonically increasing in the interval (L∗, 1].
Finally, given (3.42), and by continuity of (3.31), it follows that the GG crosses the 1 + gU

line exactly twice: at LU
1 , whereby the GG is downward-sloping, and at LU

2 , whereby it is
upward-sloping. This implies that there exist at most two unemployment steady states
in the interval (L̄, 1) where the growth rate is gU < gF. If assumption (3.46) holds with
equality, the two steady-states overlap, as the GG is tangent to the 1 + gU line at L∗ and
therefore we have LU

1 = LU
2 = L∗ and a flat GG schedule around that steady state.

To show that, in these steady states, 0 < cU
1 ≤ cU

2 < cF, first note that equilibrium
consumption is positive for any level of employment. Indeed, we can write

c(L) = ψL
[

Ψ
ψ
− ν

1 + ν
(δψL)ν

]
(A.6)

which is positive as long as Lν < 1+ν
ν

Ψ
ψ (δψ)−ν. Moreover, the definitions of Ψ and

ψ imply Ψ
ψ = 1+α

α > 1, from which it follows that the inequality above—and thereby
c(L) > 0—is always satisfied for L ∈ [0, 1] under condition (3.38). Finally, note that con-
dition (3.43) implies that equilibrium steady-state consumption is an increasing function
of steady-state employment. Indeed, we can write the first derivative of (A.6) as:

c′(L) = Ψ − νψ (δψ)ν Lν (A.7)

which is positive if Lν < 1
ν

Ψ
ψ (δψ)−ν = 1+α

αν (δψ)−ν, where the equality follows from the
definitions of Ψ and ψ. Now, the inequality above—and thereby c′(L) > 0—is always
satisfied for L ∈ [0, 1] under conditions (3.38) and (3.43), proving 0 < cU

1 ≤ cU
2 < cF.

Concerning determinacy, note that a log-linear approximation of system (3.29)-(3.34)
around a generic unemployment steady state with employment level L0 = {LU

1 , LU
2 },

adjusted consumption c0 = {cU
1 , cU

2 }, growth rate 1 + gU satisfying (3.42) and a zero-
interest rate iU = 0 yields:

ĉ0,t = Ω0 L̂0,t (A.8)

σĉ0,t = σEt ĉ0,t+1 − (1 − σ)Et ĝU
t+1 (A.9)

ĝU
t = Φ0 L̂0,t (A.10)
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where Ω0 ≡
1+α

α −ν(δψL0)
ν

1+α
α − ν

1+ν (δψL0)ν
, Φ0 ≡

[
γν(δψL0)

ν

1+γ(δψL0)
ν +

n′(L0)L0
1−∆+n(L0)

]
, and we use the notation:

ĉ0,t ≡ ct−c0
c0

, L̂0,t ≡ Lt−L0
L0

, and ĝU
t ≡ gt−gU

1+gU .
Now use (A.8) and (A.10) in (A.9) to reduce the system above into the following

stochastic difference equation in employment:

L̂0,t =

(
1 +

(σ − 1)Φ0

σΩ0

)
Et L̂0,t+1. (A.11)

For each equilibrium L0 = {LU
1 , LU

2 } around which the approximation is taken, the
above equation has a (locally) unique rational-expectations solution, i.e. L̂0,t = 0, as long
as (σ−1)Φ0

σΩ0
< 0, which can only occur if either i) Ω0 and Φ0 have the same sign and σ < 1

or ii) Ω0 and Φ0 have opposite signs and σ > 1. Given our assumption about σ > 1,
and the fact that assumptions (3.38) and (3.43) imply Ω0 > 0 for any L0 ∈ [0, 1], the
rational-expectations equilibrium is determinate if and only if

Φ0 < 0. (A.12)

Finally recall that Φ0 captures the local slope of the GG schedule around L = L0,
which is negative (i.e. Φ0 < 0) around L0 = LU

1 and positive (i.e. Φ0 > 0) around
L0 = LU

2 , as already shown. This proves that the stagnation trap associated with LU
1 is

locally determinate, while the one associated with LU
2 is not. As to the case of a single

unemployment steady state associated with L0 = L∗, since in that case the GG schedule
is flat around that equilibrium, it follows that Φ0 = 0 when L0 = L∗, thereby violating
condition (A.12). This proves that in this case the stagnation trap is locally indeterminate.
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A.3 Proposition 4

Proof. To prove determinacy, note that a log-linear approximation of the system around
the full employment steady state yields:18

ĉt = ΩL̂t (A.13)

σĉt = −ît + σEt ĉt+1 + (σ − 1)Et ĝt+1 + Etπ̂
w
t+1 (A.14)

ĝt = ΦL̂t (A.15)

ît = ϕπ̂w
t (A.16)

π̂w
t = ϑL̂t (A.17)

where Ω ≡
1+α

α −ν(δψ)ν

1+α
α − ν

1+ν (δψ)ν
, Φ ≡

[
γν(δψ)ν

1+γ(δψ)ν +
n′(1)

1−∆+n(1)

]
, and we use the notation: ĉt ≡ ct−cF

cF ,

L̂t ≡ Lt−LF

LF , ı̂t ≡ it−ı̄
1+ı̄ , π̂w

t ≡ πw
t −π∗

π∗ and ĝt ≡ gt−gF

1+gF .
Now use equations (A.13), (A.15), (A.16) and (A.17) in (A.14) to reduce the system

above into the following stochastic difference equation in employment:

L̂t =
σΩ + (σ − 1)Φ + ϑ

σΩ + ϕϑ
Et L̂t+1. (A.18)

The above equation has a (locally) unique rational-expectations solution, i.e. L̂t = 0,
as long as

∣∣∣σΩ+(σ−1)Φ+ϑ
σΩ+ϕϑ

∣∣∣ < 1, requiring

ϑ(ϕ − 1) > (σ − 1)Φ (A.19)

which is guaranteed by assumption (3.51). Hence the full employment steady state is
locally determinate.

Finally note that using equation (3.52) in equation (3.50) implies that the local slope
of the AD schedule from the left of the full-employment steady state is ϑ(ϕ − 1)/(σ − 1).
Moreover, recall that Φ captures the local slope of the GG schedule around L = 1. This
implies that condition (A.19) requires the AD schedule to be steeper than the GG, around
the full-employment steady state, where both schedules are upward sloping.

18More specifically, we are taking a first-order approximation from the left of the full-employment steady
state, as the function becomes vertical at L = 1.
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A.4 Proposition 5

Proof. To prove determinacy, note that a log-linear approximation of the system around
a generic unemployment steady state with employment level L0 = {LU

1 , LU
2 }, adjusted

consumption c0 = {cU
1 , cU

2 }, growth rate g0 = {gU
1 , gU

2 } and interest rate iU = 0 yields:

ĉ0,t = Ω0 L̂0,t (A.20)

σĉ0,t = σEt ĉ0,t+1 + (σ − 1)Et ĝ0,t+1 + Etπ̂
w
0,t+1 (A.21)

ĝ0,t = Φ0 L̂0,t (A.22)

π̂w
0,t = ϑL̂0,t (A.23)

where Ω0 ≡
1+α

α −ν(δψL0)
ν

1+α
α − ν

1+ν (δψL0)ν
, Φ0 ≡

[
γν(δψL0)

ν

1+γ(δψL0)
ν +

n′(L0)L0
1−∆+n(L0)

]
, and we use the notation:

ĉ0,t ≡ ct−c0
c0

, L̂0,t ≡ Lt−L0
L0

, π̂w
0,t ≡

πw
t −πw

0
πw

0
, and ĝ0,t ≡ gt−g0

1+g0
.

Now use (A.20), (A.22) and (A.23) in (A.21) to reduce the system above into the fol-
lowing stochastic difference equation in employment:

L̂0,t =

(
1 +

(σ − 1)Φ0 + ϑ

σΩ0

)
Et L̂0,t+1. (A.24)

For each equilibrium L0 = {LU
1 , LU

2 } around which the approximation is taken, the
above equation has a (locally) unique rational-expectations solution, i.e. L̂0,t = 0, as long
as (σ−1)Φ0+ϑ

σΩ0
< 0. Since assumptions (3.38) and (3.43) imply Ω0 > 0 for any L0 ∈ [0, 1],

the equilibrium is locally determinate if and only if (σ − 1)Φ0 + ϑ < 0, i.e.:

Φ0 <
−ϑ

σ − 1
< 0. (A.25)

Now note that using (3.52) in (3.50) implies that the local slope of the AD schedule
around a generic reference point L = L0 in a liquidity trap is −ϑ/(σ − 1) < 0. Moreover,
recall that Φ0 captures the local slope of the GG schedule around L = L0. Therefore, equa-
tion (A.25) implies that local determinacy requires indeed the slope of the AD schedule
to be larger than the slope of the GG. This makes the rest of the proof straightforward,
given continuity of both the GG and AD schedules.

If only one steady state exists, it must be that the AD schedule is tangent to the GG, in
which case the two slopes are equal and they are both negative:

Φ0 =
−ϑ

σ − 1
< 0.
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This violates condition (A.25), proving that in this case the unemployment steady state is
locally indeterminate.

If two steady states exist, on the other hand, it must be that the AD intersects the GG
in two separate points. In this case, on the one hand, the intersection associated with the
lower employment L0 = LU

1 must be characterized by a steeper GG relative to the AD,
where both are downward sloping:

Φ0 <
−ϑ

σ − 1
< 0.

This means that this equilibrium satisfies condition (A.25), and it is therefore determinate.
On the other hand, at the intersection associated with the higher employment L0 = LU

2 ,
the GG must be either downward sloping and flatter than the AD, i.e.

−ϑ

σ − 1
< Φ0 < 0, (A.26)

or upward sloping, i.e.
−ϑ

σ − 1
< 0 < Φ0.

In either case, this implies that condition (A.25) is violated, and the equilibrium is there-
fore indeterminate. It is worth emphasizing that (A.26) implies that in order for the stag-
nation trap to be indeterminate, it does not need to be associated with the upward-sloping
part of the GG, unlike in the simple model.

A.5 Proposition 6

Proof. To prove the upward shift of the GG schedule, we show that the mass of innovators
participating in the creation of new varieties is increasing in the subsidy s at the full-
employment steady-state. Recall first that the mass of horizontal innovators is defined
as:

nt(Lt, s) =
∫ 1

x(Lt,s)
h(x) f (x)dx,

where we are using h(x) = κx
1
ϖ and equation (4.3), and where f (x) is a unimodal and

right-skewed beta density function.
Then, compute the derivative of nt with respect to s, and evaluate it at L = 1. Using

the Leibniz integral rule one obtains:

∂nt

∂s
= −h(xt) f (xt)

∂xt
∂s

. (A.27)
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Note now that the derivative of the threshold, evaluated at full-employment, is:

∂xt
∂s

= −ϖ

(
1 − s

ν

1 + ν

)ϖ−1 ν

1 + ν
κ−ϖ (δψ)νϖ < 0. (A.28)

From using the above and h(x(1, s)) =
(
1 − s ν

1+ν

)
(δψ)ν into (A.27), it follows that:

∂nt

∂s
= f (x(1, s))ϖ

(
1 − s

ν

1 + ν

)ϖ ν

1 + ν
κ−ϖ (δψ)ν(1+ϖ) > 0.

Thus, an increase in the subsidy raises the mass of successful horizontal innovators
and thereby the mass of newly-created varieties.

To prove the clockwise rotation, we show that the GG schedule flattens around the
full-employment steady state. Compute the second cross-derivative of nt with respect to
Lt and s:

∂2nt

∂Lt∂s
= −

[
h′(xt)

∂xt
∂s

f (xt)
∂xt
∂Lt

+ h(xt) f ′(xt)
∂xt
∂s

∂xt
∂Lt

+ h(xt) f (xt)
∂2xt

∂Lt∂s

]
. (A.29)

To evaluate the sign of the cross derivative, note the following. f (x) > 0 by definition;
f ′(x) < 0 and arbitrarily close to 0 for x sufficiently close to 1 and/or the distribution f (x)
sufficiently right-skewed; ∂x

∂s < 0 as trivially implied by equation (4.3); ∂x
∂Lt

> 0 as shown

by (3.18); h(x) > 0 and h′(x) > 0, by assumption; ∂2x
∂Lt∂s < 0, which is trivially implied by

equation (3.18), modified to account for the subsidy as follows:

∂x(Lt, s)
∂Lt

= νϖκ−ϖ (δψLt)
νϖ

Lt

(
1 − s

ν

1 + ν

)ϖ

. (A.30)

The above implies that the first term in (A.29) is negative, the second is positive, and
the third is negative. Now note: i) the positive term is dominated by the two negative
ones for values of the threshold xt sufficiently high, which drives the magnitude of f ′(x)
towards zero and ii) around the full-employment equilibrium the value of xt reaches
its maximum value. As a consequence, the slope of the GG schedule around the full-
employment steady state decreases as the subsidy increases, as long as the distribution
f (x) is sufficiently right-skewed. We check in the calibrated version of our model that
this is indeed the case.
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B Data Appendix

B.1 Data description

Most of our variables can be downloaded from the FRED database. Our sample con-
tains quarterly observations on labour productivity growth, employment, population
(CNP16OV), R&D (Y006RC1Q027SBEA), liabilities of the nonfinancial corporate busi-
ness sector, consumption (DPCERA3M086SBEA), CPI inflation (CPIAUCSL), PCE infla-
tion (PCEPI) and imports price deflator (A021RD3Q086SBEA), over the period 1984Q1-
2019Q419. Nominal variables are deflated with GDP deflator (GDPDEF).

The population series is the Civilian Non-institutional Population from the BLS, where
high-frequency variation has been removed with the Hodrick and Prescott (1997)’s filter
with a smoothing parameter lambda of 1600, in order to avoid spikes due to census to
affect the series.

Regarding the employment rate, we take the complement to one of the unemployment
rate (UNRATE), quarterly and seasonally adjusted, from the FRED database. We scale it
by its maximum so as to get a number between 0 and 1 whose maximum is 1, as in our
model specification.

Our preferred measure of labour productivity is nonfarm business sector labor pro-
ductivity (PRS85006091) from the BLS, available on the FRED database at a quarterly
frequency.

As a robustness, we employ two additional measures of productivity growth: labour
productivity of the business sector and total factor productivity, both from Fernald (2014).

19Variables’ identifiers in parenthesis.
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C Additional Tables and Figures

Table 5: The U-shaped Growth Equation: estimation results using Fernald (2014) measure of labor produc-
tivity

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.025 0.069 0.064 -0.042 -0.264∗ -7.513∗∗

(0.030) (0.059) (0.050) (0.036) (0.146) (3.135)
Empl*Threshold 0.340∗∗

(0.156)
Empl2 3.901∗∗

(1.633)
R2 0.100 0.265 0.163 0.053 0.155 0.136
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.

Table 6: The U-shaped Growth Equation: estimation results using Fernald (2014) measure of total factor
productivity

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.056∗ 0.013 -0.001 -0.080∗∗ -0.243∗∗∗ -6.411∗∗

(0.030) (0.062) (0.053) (0.034) (0.085) (3.101)
Empl*Threshold 0.155

(0.113)
Empl2 3.311∗∗

(1.616)
R2 0.225 0.275 0.179 0.249 0.302 0.248
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.
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Table 7: The U-shaped Growth Equation: threshold regressions with different dependent variables

Fernald (2014) Labor productivity Fernald (2014) TFP

Region 1 Region 2 Region 1 Region 2
Lt ≤ .953 Lt > .953 Lt ≤ .961 Lt > .961

Lt -.362*** .049 -.243** -.088
(.141) (.0556) (.085) (.075)

BIC -1470.451 -195.49
HQIC -1484.552 -229.61
Controls ✓ ✓
N 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. The thresholds are estimated minimizing the Bayesian information criteria.
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Figure 5: The figure plots the three measures of supply shocks, together with their first principal compo-
nent. Time period is 1984Q1-2019Q4.
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Table 8: The U-shaped Growth Equation: estimation results adding more controls

(1) (2) (3) (4) (5)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 Q. 1984–2019

Empl 0.005 -0.110∗∗∗ -0.088∗∗∗ 0.031 -7.620∗∗∗

(0.017) (0.040) (0.032) (0.020) (1.692)
Empl*Threshold

Empl2 3.971∗∗∗

(0.881)
R2 0.300 0.404 0.421 0.448 0.391
Controls Yes Yes Yes Yes Yes
N 144 65 96 80 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “Q.” stands for quadratic regression
specified in Model 2.5. The vector of controls now includes, in addition to the baseline case, also popula-
tion growth, growth rate of liabilities of the nonfinancial corporate business sector and the growth rate of
investment in R&D.

Table 9: The U-shaped Growth Equation: estimation results with the difference between headline and core
CPI inflation as a proxy for the supply shock

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.013 0.037 0.028 -0.021 -0.321∗∗∗ -6.000∗∗∗

(0.019) (0.038) (0.035) (0.023) (0.095) (1.926)
Empl*Threshold 0.372∗∗∗

(0.100)
Empl2 3.120∗∗∗

(1.003)
R2 0.052 0.135 0.028 0.055 0.186 0.114
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.
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Table 10: The U-shaped Growth Equation: estimation results with the difference between headline and
PCE price index inflation as a proxy for the supply shock

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.013 0.031 0.027 -0.021 -0.307∗∗∗ -5.988∗∗∗

(0.019) (0.038) (0.035) (0.023) (0.091) (1.919)
Empl*Threshold 0.359∗∗∗

(0.096)
Empl2 3.114∗∗∗

(1.000)
R2 0.052 0.118 0.027 0.054 0.188 0.114
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.

Table 11: The U-shaped Growth Equation: estimation results with he difference between the change in the
import prices and the GDP deflator as a proxy for the supply shock

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Empl -0.013 0.016 0.019 -0.018 -0.292∗∗∗ -5.774∗∗∗

(0.019) (0.036) (0.033) (0.023) (0.098) (1.915)
Empl*Threshold 0.343∗∗∗

(0.102)
Empl2 3.002∗∗∗

(0.997)
R2 0.053 0.097 0.021 0.059 0.170 0.111
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.
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Table 12: The U-shaped Growth Equation: threshold regression with lagged employment

Employment

Region 1 Region 2
Lt−1 ≤ .953 Lt−1 > .953

Lt−1 -.112 .051
(.076) (.036)

BIC -1608.36
HQIC -1622.47
Controls ✓
N 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. The threshold is estimated minimizing the Bayesian information criteria.

Table 13: The U-shaped Growth Equation: estimation results with lagged employment

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Lagged Empl -0.001 0.026 0.028 -0.007 -0.112 -4.860∗∗

(0.019) (0.036) (0.032) (0.023) (0.076) (1.979)
Lagged-Empl*Threshold 0.158∗

(0.084)
Lagged Empl2 2.532∗∗

(1.031)
R2 0.050 0.103 0.026 0.052 0.121 0.090
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.
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Table 14: The U-shaped Growth Equation: threshold regression with two-quarters lagged employment

Employment

Region 1 Region 2
Lt−2 ≤ .976 Lt−2 > .976

Lt−2 -.020 .087
(.024) (.171)

BIC -1606.11
HQIC -1620.12
Controls ✓
N 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. The threshold is estimated minimizing the Bayesian information criteria.

Table 15: The U-shaped Growth Equation: estimation results with two quarters lagged employment

(1) (2) (3) (4) (5) (6)
L. 1984–2019 L. 1984–2000 L. 1984–2007 L. 2000–2019 PWL 1984–2019 Q. 1984–2019

Lagged Empl 0.013 0.034 0.043 0.009 -0.020 -3.751∗

(0.018) (0.034) (0.030) (0.023) (0.024) (1.990)
Lagged-Empl*Threshold -0.066

(0.172)
Lagged Empl2 1.963∗

(1.037)
R2 0.054 0.110 0.039 0.053 0.106 0.078
Controls Yes Yes Yes Yes Yes Yes
N 144 65 96 80 144 144

Notes: Standard errors are in parentheses. * indicates significance at 10%, ** at 5% and *** at 1% level,
respectively. “L.” stands for linear regression specified in Model 2.2. “PWL” stands for piecewise linear
regression specified in Model 2.4. “Q.” stands for quadratic regression specified in Model 2.5.
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